Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces

نویسندگان

  • V. Albani
  • P. Elbau
  • M. V. de Hoop
  • O. Scherzer
چکیده

In this article, we prove optimal convergence rates results for regularization methods for solving linear ill-posed operator equations in Hilbert spaces. The results generalizes existing convergence rates results on optimality to general source conditions, such as logarithmic source conditions. Moreover, we also provide optimality results under variational source conditions and show the connection to approximative source conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces

In recent years, a series of convergence rates conditions for regularization methods has been developed. Mainly, the motivations for developing novel conditions came from the desire to carry over convergence rates results from the Hilbert space setting to generalized Tikhonov regularization in Banach spaces. For instance, variational source conditions have been developed and they were expected ...

متن کامل

Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces

In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.

متن کامل

Optimal Convergence Rates for Tikhonov Regularization in Besov Scales

Abstract. In this paper we deal with linear inverse problems and convergence rates for Tikhonov regularization. We consider regularization in a scale of Banach spaces, namely the scale of Besov spaces. We show that regularization in Banach scales differs from regularization in Hilbert scales in the sense that it is possible that stronger source conditions may lead to weaker convergence rates an...

متن کامل

Newton-type regularization methods for nonlinear inverse problems

Inverse problems arise whenever one searches for unknown causes based on observation of their effects. Such problems are usually ill-posed in the sense that their solutions do not depend continuously on the data. In practical applications, one never has the exact data; instead only noisy data are available due to errors in the measurements. Thus, the development of stable methods for solving in...

متن کامل

Convergence results for the Bayesian inversion theory∗

In this paper we derive convergence results for regularized solutions of linear inverse problems obtained by the Bayesian approach in the Ky Fan metric. We show that the convergence rate is order optimal in finite dimensional spaces. Moreover, we prove that order optimal rates can be obtained for weighted Bayesian solutions when the dimension goes to infinity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2016