Distinct expression of functionally glycosylated alpha-dystroglycan in muscle and non-muscle tissues of FKRP mutant mice
نویسندگان
چکیده
The glycosylation of alpha-dystroglycan (α-DG) is crucial in maintaining muscle cell membrane integrity. Dystroglycanopathies are identified by the loss of this glycosylation leading to a breakdown of muscle cell membrane integrity and eventual degeneration. However, a small portion of fibers expressing functionally glycosylated α-DG (F-α-DG) (revertant fibers, RF) have been identified. These fibers are generally small in size, centrally nucleated and linked to regenerating fibers. Examination of different muscles have shown various levels of RFs but it is unclear the extent of which they are present. Here we do a body-wide examination of muscles from the FKRP-P448L mutant mouse for the prevalence of RFs. We have identified great variation in the distribution of RF in different muscles and tissues. Triceps shows a large increase in RFs and together with centrally nucleated fibers whereas the pectoralis shows a reduction in revertant but increase in centrally nucleated fibers from 6 weeks to 6 months of age. We have also identified that the sciatic nerve with near normal levels of F-α-DG in the P448Lneo- mouse with reduced levels in the P448Lneo+ and absent in LARGEmyd. The salivary gland of LARGEmyd mice expresses high levels of F-α-DG. Interestingly the same glands in the P448Lneo-and to a lesser degree in P448Lneo+ also maintain considerable amount of F-α-DG, indicating the non-proliferating epithelial cells have a molecular setting permitting glycosylation.
منابع مشابه
Progressive Dystrophic Pathology in Diaphragm and Impairment of Cardiac Function in FKRP P448L Mutant Mice
Mutations in the gene for fukutin-related protein represent a subset of muscular dystrophies known as dystroglycanopathies characterized by loss of functionally-glycosylated-alpha-dystroglycan and a wide range of dystrophic phenotypes. Mice generated by our lab containing the P448L mutation in the fukutin-related protein gene demonstrate the dystrophic phenotype similar to that of LGMD2I. Here ...
متن کاملFunctional requirements for fukutin-related protein in the Golgi apparatus.
Two forms of congenital muscular dystrophy (CMD), Fukuyama CMD and CMD type 1C (MDC1C) are caused by mutations in the genes encoding two putative glycosyltransferases, fukutin and fukutin-related protein (FKRP). Additionally, mutations in the FKRP gene also cause limb-girdle muscular dystrophy type 2I (LGMD2I), a considerably milder allelic variant than MDC1C. All of these diseases are associat...
متن کاملReduced expression of fukutin related protein in mice results in a model for fukutin related protein associated muscular dystrophies.
Mutations in fukutin related protein (FKRP) are responsible for a common group of muscular dystrophies ranging from adult onset limb girdle muscular dystrophies to severe congenital forms with associated structural brain involvement, including Muscle Eye Brain disease. A common feature of these disorders is the variable reduction in the glycosylation of skeletal muscle alpha-dystroglycan. In or...
متن کاملFukutin-related protein associates with the sarcolemmal dystrophin-glycoprotein complex.
Mutations in fukutin-related protein (FKRP) give rise to mild and more severe forms of muscular dystrophy. FKRP patients have reduced glycosylation of the extracellular protein dystroglycan, and FKRP itself shows sequence similarity to glycosyltransferases, implicating FKRP in the processing of dystroglycan. However, FKRP localization is controversial, and no FKRP complexes are known, so any FK...
متن کاملZebrafish models for human FKRP muscular dystrophies
Various muscular dystrophies are associated with the defective glycosylation of alpha-dystroglycan and are known to result from mutations in genes encoding glycosyltransferases. Fukutin-related protein (FKRP) was identified as a homolog of fukutin, the defective protein in Fukuyama-type congenital muscular dystrophy (FCMD), that is thought to function as a glycosyltransferase. Mutations in FKRP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018