Markov Extensions, Zeta Functions, and Fredholm Theory for Piecewise Invertible Dynamical Systems
نویسندگان
چکیده
Transfer operators and zeta functions of piecewise monotonie and of more general piecewise invertible dynamical systems are studied. To this end we construct Markov extensions of given systems, develop a kind of Fredholm theory for them, and carry the results back to the original systems. This yields e.g. bounds on the number of ergodic maximal measures or equilibrium states.
منابع مشابه
A New Determinant for Quantum Chaos
Dynamical zeta functions [1], Fredholm determinants [2] and quantum Selberg zeta functions [3, 4] have recently been established as powerful tools for evaluation of classical and quantum averages in low dimensional chaotic dynamical systems [5] [8]. The convergence of cycle expansions [9] of zeta functions and Fredholm determinants depends on their analytic properties; particularly strong resul...
متن کاملHYBRID FUNCTIONS APPROACH AND PIECEWISE CONSTANT FUNCTION BY COLLOCATION METHOD FOR THE NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS
In this work, we will compare two approximation method based on hybrid Legendre andBlock-Pulse functions and a computational method for solving nonlinear Fredholm-Volterraintegral equations of the second kind which is based on replacement of the unknown functionby truncated series of well known Block-Pulse functions (BPfs) expansion
متن کاملSolving Second Kind Volterra-Fredholm Integral Equations by Using Triangular Functions (TF) and Dynamical Systems
The method of triangular functions (TF) could be a generalization form of the functions of block-pulse (Bp). The solution of second kind integral equations by using the concept of TF would lead to a nonlinear equations system. In this article, the obtained nonlinear system has been solved as a dynamical system. The solution of the obtained nonlinear system by the dynamical system throug...
متن کاملTheory of block-pulse functions in numerical solution of Fredholm integral equations of the second kind
Recently, the block-pulse functions (BPFs) are used in solving electromagnetic scattering problem, which are modeled as linear Fredholm integral equations (FIEs) of the second kind. But the theoretical aspect of this method has not fully investigated yet. In this article, in addition to presenting a new approach for solving FIE of the second kind, the theory of both methods is investigated as a...
متن کاملSliding Singularities of Bounded Invertible Planar Piecewise Isometric Dynamics
It is known that the singularities of bounded invertible piecewise isometric dynamical systems in Euclidean plane can be classified as, removable, sliding and shuffling singularities, based upon their geometrical aspects. Moreover, it is known that the Devaney-chaos of the bounded invertible piecewise isometric systems can be generated only from the sliding singularities, while the other singul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1989