Effect of complete protein 4.1R deficiency on ion transport properties of murine erythrocytes.
نویسندگان
چکیده
Moderate hemolytic anemia, abnormal erythrocyte morphology (spherocytosis), and decreased membrane stability are observed in mice with complete deficiency of all erythroid protein 4.1 protein isoforms (4.1(-/-); Shi TS et al. J Clin Invest 103: 331, 1999). We have examined the effects of erythroid protein 4.1 (4.1R) deficiency on erythrocyte cation transport and volume regulation. 4.1(-/-) mice exhibited erythrocyte dehydration that was associated with reduced cellular K and increased Na content. Increased Na permeability was observed in these mice, mostly mediated by Na/H exchange with normal Na-K pump and Na-K-2Cl cotransport activities. The Na/H exchange of 4.1(-/-) erythrocytes was markedly activated by exposure to hypertonic conditions (18.2 +/- 3.2 in 4.1(-/-) vs. 9.8 +/- 1.3 mmol/10(13) cell x h in control mice), with an abnormal dependence on osmolality (EC(50) = 417 +/- 42 in 4.1(-/-) vs. 460 +/- 35 mosmol/kgH(2)O in control mice), suggestive of an upregulated functional state. While the affinity for internal protons was not altered (K(0.5) = 489.7 +/- 0.7 vs. 537.0 +/- 0.56 nM in control mice), the V(max) of the H-induced Na/H exchange activity was markedly elevated in 4.1(-/-) erythrocytes (V(max) 91.47 +/- 7.2 compared with 46.52 +/- 5.4 mmol/10(13) cell x h in control mice). Na/H exchange activation by okadaic acid was absent in 4.1(-/-) erythrocytes. Altogether, these results suggest that erythroid protein 4.1 plays a major role in volume regulation and physiologically downregulates Na/H exchange in mouse erythrocytes. Upregulation of the Na/H exchange is an important contributor to the elevated cell Na content of 4.1(-/-) erythrocytes.
منابع مشابه
4.1R-deficient human red blood cells have altered phosphatidylserine exposure pathways and are deficient in CD44 and CD47 glycoproteins.
BACKGROUND Protein 4.1R is an important component of the red cell membrane skeleton. It imparts structural integrity and has transmembrane signaling roles by direct interactions with transmembrane proteins and other membrane skeletal components, notably p55 and calmodulin. DESIGN AND METHODS Spontaneous and ligation-induced phosphatidylserine exposure on erythrocytes from two patients with 4....
متن کاملNeuroacanthocytosis associated with a defect of the 4.1R membrane protein
BACKGROUND Neuroacanthocytosis (NA) denotes a heterogeneous group of diseases that are characterized by nervous system abnormalities in association with acanthocytosis in the patients' blood. The 4.1R protein of the erythrocyte membrane is critical for the membrane-associated cytoskeleton structure and in central neurons it regulates the stabilization of AMPA receptors on the neuronal surface a...
متن کاملStructural protein 4.1R is integrally involved in nuclear envelope protein localization, centrosome-nucleus association and transcriptional signaling.
The multifunctional structural protein 4.1R is required for assembly and maintenance of functional nuclei but its nuclear roles are unidentified. 4.1R localizes within nuclei, at the nuclear envelope, and in cytoplasm. Here we show that 4.1R, the nuclear envelope protein emerin and the intermediate filament protein lamin A/C co-immunoprecipitate, and that 4.1R-specific depletion in human cells ...
متن کاملCardiac cytoskeleton and arrhythmia: an unexpected role for protein 4.1R in cardiac excitability.
The cellular activity of both excitable and nonexcitable cells depends on the coordinate activities of membrane ion channels, transporters, pumps, receptors, and cell adhesion molecules. Underlying these integral membrane proteins in metazoan cells is an elaborate cytoskeletal network that defines cell shape and local membrane architecture and provides strength and stability for cell/cell and c...
متن کاملInvestigation of ion transport and water content properties in anion exchange membranes based on polysulfone for solid alkaline fuel cell application
In present research work, homogeneous anion exchange membranes based on polysulfone (QAPSFs) were prepared via chloromethylation, amination and alkalization. In amination step, trimethylamine and N,N,N',N'-tetramethyl-1,6-hexanediamine were used as amination and crosslinking agents, respectively. The chloromethylated polysulfone was characterized by 1HNMR spectroscopy and chloromethylation degr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 291 5 شماره
صفحات -
تاریخ انتشار 2006