Extending Results from Orthogonal Matrices to the Class of P -orthogonal Matrices
نویسندگان
چکیده
We extend results concerning orthogonal matrices to a more general class of matrices that will be called P -orthogonal. This is a large class of matrices that includes, for instance, orthogonal and symplectic matrices as particular cases. We study the elementary properties of P -orthogonal matrices and give some exponential representations. The role of these matrices in matrix decompositions, with particular emphasis on generalized polar decompositions, is analysed. An application to matrix equations is presented. Key-words: P -orthogonal, P -symmetric, P -skew-symmetric, generalized polar decompositions, primary matrix functions ∗Work supported in part by ISR and a PRODEP grant, under Concurso n. 4/5.3/PRODEP/2000. †Work supported in part by ISR and research network contract ERB FMRXCT-970137.
منابع مشابه
On the optimal correction of inconsistent matrix equations $AX = B$ and $XC = D$ with orthogonal constraint
This work focuses on the correction of both the coecient and the right hand side matrices of the inconsistent matrix equations $AX = B$ and $XC = D$ with orthogonal constraint. By optimal correction approach, a general representation of the orthogonal solution is obtained. This method is tested on two examples to show that the optimal correction is eective and highly accurate.
متن کاملON SELBERG-TYPE SQUARE MATRICES INTEGRALS
In this paper we consider Selberg-type square matrices integrals with focus on Kummer-beta types I & II integrals. For generality of the results for real normed division algebras, the generalized matrix variate Kummer-beta types I & II are defined under the abstract algebra. Then Selberg-type integrals are calculated under orthogonal transformations.
متن کاملSome Optimal Codes From Designs
The binary and ternary codes spanned by the rows of the point by block incidence matrices of some 2-designs and their complementary and orthogonal designs are studied. A new method is also introduced to study optimal codes.
متن کاملNumerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials
In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...
متن کاملNonexistence Results for Hadamard-like Matrices
The class of square (0, 1,−1)-matrices whose rows are nonzero and mutually orthogonal is studied. This class generalizes the classes of Hadamard and Weighing matrices. We prove that if there exists an n by n (0, 1,−1)-matrix whose rows are nonzero, mutually orthogonal and whose first row has no zeros, then n is not of the form pk, 2pk or 3p where p is an odd prime, and k is a positive integer.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002