Activated protein C reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation.
نویسندگان
چکیده
We examined whether activated protein C (APC) reduces ischemia/reperfusion (I/R)-induced renal injury by inhibiting leukocyte activation. In a rat model, intravenous administration of APC markedly reduced I/R-induced renal dysfunction and histological changes, whereas intravenous administration of dansyl glutamylglycylarginyl chloromethyl ketone-treated factor Xa (DEGR-FXa; active-site-blocked factor Xa), heparin or diisopropyl fluorophosphate-treated APC (DIP-APC; inactive derivative of ARC) had no effect. Furthermore, APC significantly inhibited the I/R-induced decrease in renal tissue blood flow and the increase in the vascular permeability, whereas neither DEGR-FXa, heparin, nor DIP-APC produced such effects. Renal I/R-induced increases in plasma levels of fibrin degradation products were significantly inhibited by APC, DEGR-FXa, and heparin. These observations suggest that APC reduces I/R-induced renal injury independently of its anticoagulant effects but in a manner dependent on its serine protease activity. Renal levels of tumor necrosis factor-alpha (TNF-alpha), rat interleukin-8, and myeloperoxidase were significantly increased after renal I/R. These increases were significantly inhibited by APC but not by DEGR-FXa, heparin, or DIP-APC. Leukocytopenia produced effects similar to those of APC. These findings strongly suggest that APC protects against I/R-induced renal injury not by inhibiting coagulation abnormalities but by inhibiting activation of leukocytes that play an important role in I/R-induced renal injury. Inhibition of leukocyte activation by APC could be explained by the inhibitory activity of TNF-alpha. (Blood. 2000;95:3781-3787)
منابع مشابه
Antithrombin reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation through promotion of prostacyclin production.
Antithrombin (AT) supplementation in patients with severe sepsis has been shown to improve organ failures in which activated leukocytes are critically involved. However, the precise mechanism(s) for the therapeutic effects of AT is not well understood. We examined in rats whether AT reduces ischemia/reperfusion (I/R)-induced renal injury by inhibiting leukocyte activation. AT markedly reduced t...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Antithrombin reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation through promotion of prostacyclin production
Antithrombin (AT) supplementation in patients with severe sepsis has been shown to improve organ failures in which activated leukocytes are critically involved. However, the precise mechanism(s) for the therapeutic effects of AT is not well understood. We examined in rats whether AT reduces ischemia/reperfusion (I/R)– induced renal injury by inhibiting leukocyte activation. AT markedly reduced ...
متن کاملOrexin-A Improves Hepatic Injury Following Renal Ischemia Reperfusion in Rats
Introduction: Orexins are novel neuropeptides that are localized in neurons in the lateral hypothalamus. They are implicated in a wide variety of physiological functions. Orexin peptides and receptors are found in many peripheral organs such as kidneys. It has been demonstrated that exogenous orexin-A can induce protective effects against ischemia–reperfusion injury in many organs. The goal ...
متن کاملThe preventive effects of dexmedetomidine against intestinal ischemia-reperfusion injury in Wistar rats
Objective(s): Intestinal ischemia-reperfusion is a major problem, which may lead to multiorgan failure and death. The aim of this study was to evaluate the protective effects of dexmedetomidine on cell proliferation, antioxidant system, cell death, and structural integrity in intestinal injury induced by ischemia-reperfusion in rats. Materials and Methods: Animals were randomized into three gro...
متن کاملاثر حفاظتی سیمواستاتین در آسیب ناشی از ایسکمی – رپرفیوژن کلیه و نقش کانالهای پتاسیمی حساس به آدنوزین تری فسفات
Background & Aim: Renal dysfunction due to ischemia-reperfusion (I/R) injury is a common problem following renovascular surgery or kidney transplantation. There is a lot of emerging evidence that statins, which are HMG-COA reductase inhibitors, have renal protective effects against ischemia-reperfusion injury,but the exact mechanism of their protective effect has not been detected properly....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 95 12 شماره
صفحات -
تاریخ انتشار 2000