Transvection at the vestigial locus of Drosophila melanogaster.
نویسندگان
چکیده
Transvection is a phenomenon wherein gene expression is effected by the interaction of alleles in trans and often results in partial complementation between mutant alleles. Transvection is dependent upon somatic pairing between homologous chromosome regions and is a form of interallelic complementation that does not occur at the polypeptide level. In this study we demonstrated that transvection could occur at the vestigial (vg) locus by revealing that partial complementation between two vg mutant alleles could be disrupted by changing the genomic location of the alleles through chromosome rearrangement. If chromosome rearrangements affect transvection by disrupting somatic pairing, then combining chromosome rearrangements that restore somatic pairing should restore transvection. We were able to restore partial complementation in numerous rearrangement trans-heterozygotes, thus providing substantial evidence that the observed complementation at vg results from a transvection effect. Cytological analyses revealed this transvection effect to have a large proximal critical region, a feature common to other transvection effects. In the Drosophila interphase nucleus, paired chromosome arms are separated into distinct, nonoverlapping domains. We propose that if the relative position of each arm in the nucleus is determined by the centromere as a relic of chromosome positions after the last mitotic division, then a locus will be displaced to a different territory of the interphase nucleus relative to its nonrearranged homolog by any rearrangement that links that locus to a different centromere. This physical displacement in the nucleus hinders transvection by disrupting the somatic pairing of homologous chromosomes and gives rise to proximal critical regions.
منابع مشابه
Transvection-Based Gene Regulation in Drosophila Is a Complex and Plastic Trait
Transvection, a chromosome pairing-dependent form of trans-based gene regulation, is potentially widespread in the Drosophila melanogaster genome and varies across cell types and within tissues in D. melanogaster, characteristics of a complex trait. Here, we demonstrate that the trans-interactions at the Malic enzyme (Men) locus are, in fact, transvection as classically defined and are plastic ...
متن کاملInterallelic Transcriptional Enhancement as an in Vivo Measure of Transvection in Drosophila melanogaster
Transvection-pairing-dependent interallelic regulation resulting from enhancer action in trans-occurs throughout the Drosophila melanogaster genome, likely as a result of the extensive somatic homolog pairing seen in Dipteran species. Recent studies of transvection in Drosophila have demonstrated important qualitative differences between enhancer action in cis vs. in trans, as well as a modest ...
متن کاملEffects of chromosomal rearrangements on transvection at the yellow gene of Drosophila melanogaster.
Homologous chromosomes are paired in somatic cells of Drosophila melanogaster. This pairing can lead to transvection, which is a process by which the proximity of homologous genes can lead to a change in gene expression. At the yellow gene, transvection is the basis for several examples of intragenic complementation involving the enhancers of one allele acting in trans on the promoter of a pair...
متن کاملInteractions of vestigial and scabrous with the Notch locus of Drosophila melanogaster.
Interactions are described between the Notch locus of Drosophila melanogaster, and two other loci, scabrous and vestigial, which respectively affect the eyes and wings. The Notch locus is responsible for mediating decisions of cell fate throughout development in many different tissues. Mutations and duplications of vestigial and scabrous alter the severity of phenotypes associated with Notch mu...
متن کاملTransvection at the end of the truncated chromosome in Drosophila melanogaster.
The phenomenon of transvection is well known for the Drosophila yellow locus. Thus enhancers of a promoterless yellow locus in one homologous chromosome can activate the yellow promoter in the other chromosome where the enhancers are inactive or deleted. In this report, we examined the requirements for trans-activation of the yellow promoter at the end of the deficient chromosome. A number of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 170 4 شماره
صفحات -
تاریخ انتشار 2005