Energy-Efficient Power and Bandwidth Allocation in an Integrated Sub-6 GHz - Millimeter Wave System

نویسندگان

  • Morteza Hashemi
  • C. Emre Koksal
  • Ness B. Shroff
چکیده

In mobile millimeter wave (mmWave) systems, energy is a scarce resource due to the large losses in the channel and high energy usage by analog-to-digital converters (ADC), which scales with bandwidth. In this paper, we consider a communication architecture that integrates the sub-6 GHz and mmWave technologies in 5G cellular systems. In order to mitigate the energy scarcity in mmWave systems, we investigate the rate-optimal and energy-efficient physical layer resource allocation jointly across the sub-6 GHz and mmWave interfaces. First, we formulate an optimization problem in which the objective is to maximize the achievable sum rate under power constraints at the transmitter and receiver. Our formulation explicitly takes into account the energy consumption in integrated-circuit components, and assigns the optimal power and bandwidth across the interfaces. We consider the settings with no channel state information and partial channel state information at the transmitter and under high and low SNR scenarios. Second, we investigate the energy efficiency (EE) defined as the ratio between the amount of data transmitted and the corresponding incurred cost in terms of power. We use fractional programming and Dinkelbach’s algorithm to solve the EE optimization problem. Our results prove that despite the availability of huge bandwidths at the mmWave interface, it may be optimal (in terms of achievable sum rate and energy efficiency) to utilize it partially. Moreover, depending on the sub-6 GHz and mmWave channel conditions and total power budget, it may be optimal to activate only one of the interfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rate-Optimal Power and Bandwidth Allocation in an Integrated Sub-6 GHz – Millimeter Wave Architecture

In millimeter wave (mmWave) systems, energy is a scarce resource due to the large channel losses and high energy usage by analog-to-digital converters. To mitigate this issue, we propose an integrated architecture that combines the sub-6 GHz and mmWave technologies. We investigate the power and bandwidth allocation jointly across the interfaces in order to maximize the achievable sum rate under...

متن کامل

Integrated Millimeter Wave and Sub-6 GHz Wireless Networks: A Roadmap for Ultra-Reliable Low-Latency Communications

Emerging wireless services such as augmented reality require next-generation wireless networks to support ultrareliable and low-latency communication (URLLC), while also guaranteeing high data rates. Existing wireless networks that solely rely on the scarce sub-6 GHz, microwave (μW) frequency bands will be unable to meet the low-latency, high capacity requirements of future wireless services du...

متن کامل

Advanced Hemt Mmic Circuits for Millimeter- and Submillimeter-wave Power Sources

This paper focuses on InP-based, HEMT Monolithic Millimeter-wave Integrated Circuit (MMIC) power amplifiers for applications to heterodyne receivers, transmitters, and communications circuits. Recently, we have developed several HEMT MMIC circuits using HRL Laboratories' 0.1 um InP HEMT technology with unprecedented high frequency performance and output power. Our results include an 80 GHz band...

متن کامل

A 35-GHz Beam Waveguide System for the Millimeter-Wave Radar

II The millimeter-wave radar is a broadband, dual-polarized Cassegrain system operating in the Ka band (35 GHz) and W band (95 GHz). To upgrade system sensitivity and bandwidth, we replaced the 35-GHz microwave system with a reflecting beam waveguide (BWG), which is a quasi-optical system. This article describes the design and performance of the BWG retrofit. The goal is to increase sensitivity...

متن کامل

Millimeter-Wave/Sub-Terahertz CMOS Transceivers for High-Speed Wireless Communications

Millimeter-Wave/Sub-Terahertz CMOS Transceivers for High-Speed Wireless Communications by Shinwon Kang Doctor of Philosophy in Electrical Engineering and Computer Sciences University of California, Berkeley Professor Ali M. Niknejad, Chair Millimeter-wave and sub-terahertz frequency bands are available for wideband applications such as high data-rate communication systems. As the respective wav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.00980  شماره 

صفحات  -

تاریخ انتشار 2017