Equilibrium thermodynamics and folding kinetics of a short, fast-folding, beta-hairpin.

نویسندگان

  • Camilo A Jimenez-Cruz
  • Angel E Garcia
چکیده

Equilibrium thermodynamics of a short beta-hairpin are studied using unbiased all-atom replica exchange molecular dynamics simulations in explicit solvent. An exploratory analysis of the free energy landscape of the system is provided in terms of various structural characteristics, for both the folded and unfolded ensembles. We find that the favorable interactions between the ends introduced by the tryptophan cap, along with the flexibility of the turn region, explain the remarkable stability of the folded state. Charging of the N termini results in effective roughening of the free energy landscape and stabilization of non-native contacts. Folding-unfolding dynamics are further discussed using a set of 2413 independent molecular dynamics simulations, 2 ns to 20 ns long, at the melting temperature of the beta-hairpin. A novel method for the construction of Markov models consisting of an iterative refinement of the discretization in reduced dimensionality is presented and used to generate a detailed kinetic network of the system. The hairpin is found to fold heterogeneously on sub-microsecond timescales, with the relative position of the tryptophan side chains driving the selection of the specific pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hidden complexity of free energy surfaces for peptide (protein) folding.

An understanding of the thermodynamics and kinetics of protein folding requires a knowledge of the free energy surface governing the motion of the polypeptide chain. Because of the many degrees of freedom involved, surfaces projected on only one or two progress variables are generally used in descriptions of the folding reaction. Such projections result in relatively smooth surfaces, but they c...

متن کامل

Single-Molecule Fluorescence Resonance Energy Transfer Studies of the Human Telomerase RNA Pseudoknot: Temperature-/Urea-Dependent Folding Kinetics and Thermodynamics

The ribonucleoprotein telomerase is an RNA-dependent DNA polymerase that catalyzes the repetitive addition of a short, species-specific, DNA sequence to the ends of linear eukaryotic chromosomes. The single RNA component of telomerase contains both the template sequence for DNA synthesis and a functionally critical pseudoknot motif, which can also exist as a less stable hairpin. Here we use a m...

متن کامل

A statistical mechanical model for beta-hairpin kinetics.

Understanding the mechanism of protein secondary structure formation is an essential part of the protein-folding puzzle. Here, we describe a simple statistical mechanical model for the formation of a beta-hairpin, the minimal structural element of the antiparallel beta-pleated sheet. The model accurately describes the thermodynamic and kinetic behavior of a 16-residue, beta-hairpin-forming pept...

متن کامل

Exact solution of the Muñoz-Eaton model for protein folding.

A transfer-matrix formalism is introduced to evaluate exactly the partition function of the Muñoz-Eaton model, relating the folding kinetics of proteins of known structure to their thermodynamics and topology. This technique can be used for a generic protein, for any choice of the energy and entropy parameters, and in principle allows the model to be used as a first tool to characterize the dyn...

متن کامل

Kinetic analysis of molecular dynamics simulations reveals changes in the denatured state and switch of folding pathways upon single-point mutation of a beta-sheet miniprotein.

The effects of a single-point mutation on folding thermodynamics and kinetics are usually interpreted by focusing on the native structure and the transition state. Here, the entire conformational spaces of a 20-residue three-stranded antiparallel beta-sheet peptide (double hairpin) and of its single-point mutant W10V are sampled close to the melting temperature by equilibrium folding-unfolding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 14  شماره 

صفحات  -

تاریخ انتشار 2014