Enhancing particle swarm optimization using generalized opposition-based learning

نویسندگان

  • Hui Wang
  • Zhijian Wu
  • Shahryar Rahnamayan
  • Yong Liu
  • Mario Ventresca
چکیده

Particle swarm optimization (PSO) has been shown to yield good performance for solving various optimization problems. However, it tends to suffer from premature convergence when solving complex problems. This paper presents an enhanced PSO algorithm called GOPSO, which employs generalized opposition-based learning (GOBL) and Cauchy mutation to overcome this problem. GOBL can provide a faster convergence, and the Cauchy mutation with a long tail helps trapped particles escape from local optima. The proposed approach uses a similar scheme as opposition-based differential evolution (ODE) with opposition-based population initialization and generation jumping using GOBL. Experiments are conducted on a comprehensive set of benchmark functions, including rotated multimodal problems and shifted large-scale problems. The results show that GOPSO obtains promising performance on a majority of the test problems. 2011 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle Swarm Optimization based on Multiple Swarms and Opposition-based Learning*

Standard particle swarm optimization is easy to fall into local optimum and has the problem of low precision. To solve these problems, the paper proposes an effective approach, called particle swarm optimization based on multiple swarms and opposition-based learning, which divides swarm into two subswarms. The 1st sub-swarm employs PSO evolution model in order to hold the self-learning ability;...

متن کامل

Opposition-based Learning Particle Swarm Optimization of Running Gait for Humanoid Robot

This paper investigates the problem of running gait optimization for humanoid robot. In order to reduce energy consumption and guarantee the dynamic balance including both horizontal and vertical stability, a novel running gait generation based on opposition-based learning particle swarm optimization (PSO) is proposed which aims at high energy efficiency with better stability. In the proposed s...

متن کامل

An Improved Cat Swarm Optimization Algorithm Based on Opposition-Based Learning and Cauchy Operator for Clustering

Clustering is a NP-hard problem that is used to find the relationship between patterns in a given set of patterns. It is an unsupervised technique that is applied to obtain the optimal cluster centers, especially in partitioned based clustering algorithms. On the other hand, cat swarm optimization (CSO) is a new metaheuristic algorithm that has been applied to solve various optimization problem...

متن کامل

Study on Optimization of Logistics Distribution Routes Based on Opposi- tion-based Learning Particle Swarm Optimization Algorithm

In view of shortcomings of the particle swarm optimization algorithm such as poor late optimization ability and proneness to local optimization etc, this paper proposes an opposition-based learning particle swarm optimization (OBLPSO) algorithm for the optimization of logistics distribution routes, firstly, establishes a logistics distribution route optimization mathematical model, and then sol...

متن کامل

Opposition-Based Barebones Particle Swarm for Constrained Nonlinear Optimization Problems

This paper presents a modified barebones particle swarm optimization OBPSO to solve constrained nonlinear optimization problems. The proposed approach OBPSO combines barebones particle swarm optimization BPSO and opposition-based learning OBL to improve the quality of solutions. A novel boundary search strategy is used to approach the boundary between the feasible and infeasible search region. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 181  شماره 

صفحات  -

تاریخ انتشار 2011