A Poincare-birkhoff-witt Theorem for Quadratic Algebras with Group Actions
نویسندگان
چکیده
Braverman, Gaitsgory, Polishchuk, and Positselski gave necessary and sufficient conditions for a nonhomogeneous quadratic algebra to satisfy the Poincaré-Birkhoff-Witt property when its homogeneous version is Koszul. We widen their viewpoint and consider a quotient of an algebra that is free over some (not necessarily semisimple) subalgebra. We show that their theorem holds under a weaker hypothesis: We require the homogeneous version of the nonhomogeneous quadratic algebra to be the skew group algebra (semidirect product algebra) of a finite group acting on a Koszul algebra, obtaining conditions for the Poincaré-Birkhoff-Witt property over (nonsemisimple) group algebras. We prove our main results by exploiting a double complex adapted from Guccione, Guccione, and Valqui (formed from a Koszul complex and a resolution of the group), giving a practical way to analyze Hochschild cohomology and deformations of skew group algebras in positive characteristic. We apply these conditions to graded Hecke algebras and Drinfeld orbifold algebras (including rational Cherednik algebras and symplectic reflection algebras) in arbitrary characteristic, with special interest in the case when the characteristic of the underlying field divides the order of the acting group.
منابع مشابه
A Quantum Analog of the Poincare–birkhoff–witt Theorem
We reduce the basis construction problem for Hopf algebras generated by skew-primitive semi-invariants to a study of special elements, called “super-letters,” which are defined by Shirshov standard words. In this way we show that above Hopf algebras always have sets of PBW-generators (“hard” super-letters). It is shown also that these Hopf algebras having not more than finitely many “hard” supe...
متن کاملA Poincaré-birkhoff-witt Theorem for Generalized Lie Color Algebras
A proof of Poincaré-Birkhoff-Witt theorem is given for a class of generalized Lie algebras closely related to the Gurevich S-Lie algebras. As concrete examples, we construct the positive (negative) parts of the quantized universal enveloping algebras of type An and Mp,q,ǫ(n, K), which is a nonstandard quantum deformation of GL(n). In particular, we get, for both algebras, a unified proof of the...
متن کاملPBW Bases, Non–Degeneracy Conditions and Applications
We establish an explicit criteria (the vanishing of non–degeneracy conditions) for certain noncommutative algebras to have Poincaré–Birkhoff– Witt basis. We study theoretical properties of such G–algebras, concluding they are in some sense ”close to commutative”. We use the non–degeneracy conditions for practical study of certain deformations of Weyl algebras, quadratic and diffusion algebras. ...
متن کاملPoincaré-birkhoff-witt Deformations of Smash Product Algebras from Hopf Actions on Koszul Algebras
Let H be a Hopf algebra and let B be a Koszul H-module algebra. We provide necessary and sufficient conditions for a filtered algebra to be a Poincaré-Birkhoff-Witt (PBW) deformation of the smash product algebra B#H. Many examples of these deformations are given.
متن کاملDrinfeld Orbifold Algebras
We define Drinfeld orbifold algebras as filtered algebras deforming the skew group algebra (semi-direct product) arising from the action of a finite group on a polynomial ring. They simultaneously generalize Weyl algebras, graded (or Drinfeld) Hecke algebras, rational Cherednik algebras, symplectic reflection algebras, and universal enveloping algebras of Lie algebras with group actions. We giv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012