Time-varying parameter estimation with application to trajectory tracking

نویسنده

  • K. Bousson
چکیده

Purpose – This paper is concerned with an online parameter estimation algorithm for nonlinear uncertain time-varying systems for which no stochastic information is available. Design/methodology/approach – The estimation procedure, called nonlinear learning rate adaptation (NLRA), computes an individual adaptive learning rate for each parameter instead of using a single adaptive learning rate for all the parameters as done in stochastic approximation, each individual learning rate being controlled by a meta-learning rate rule for the sake of minimizing the measurement prediction error. The method does not require stochastic information about the system model and the measurement noise covariance matrices contrarily to the Kalman filtering. Numerical results about aircraft navigation trajectory tracking show that the method is able to estimate reliably time-varying parameters even in presence of measurement noise. Findings – The proposed algorithm is practically insensitive to changes in the meta-learning rate. Therefore, the performance of the method is stable with respect to the tuning parameter of the algorithm. Practical implications – The proposed NLRA method may be adopted for recursive parameter estimation of uncertain systems when no stochastic information is available. It may also be used for process regulation and dynamic system stabilization in feedback control applications. Originality/value – Provides a method for fast and practical computation of parameter estimates without requiring to know the model and measurement noise covariance matrices contrarily to existing stochastic estimation methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Target Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks

Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...

متن کامل

Robust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length

This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...

متن کامل

Adaptive Sliding Mode Tracking Control of Mobile Robot in Dynamic Environment Using Artificial Potential Fields

Solution to the safe and collision-free trajectory of the wheeled mobile robot in cluttered environments containing the static and/or dynamic obstacle has become a very popular and challenging research topic in the last decade. Notwithstanding of the amount of publications dealing with the different aspects of this field, the ongoing efforts to address the more effective and creative methods is...

متن کامل

Trajectory Tracking Weeled Mobile Robot Using Backstepping Method with Connection off Axle Trailer

The connection of the tractor to the inactive trailer or motor vehicle causes a motion control problem when turning in the screw, forward or backward movements and high speeds. This is due to the inactive trailer being controlled by the tracking using a physical link that is not affected by the movement. Trailers usually take tracks under these conditions. This phenomenon is called Jack Knife. ...

متن کامل

Integrated Direct/Indirect Adaptive Robust Motion Control of Single-Rod Hydraulic Actuators with Time-Varying Unknown Inertia

This paper studies the precision motion control of single-rod hydraulic actuators with accurate parameter estimations. An integrated direct/indirect adaptive robust controller (DIARC) is proposed to take into account the inherent nonlinearity, parametric uncertainties and uncertain nonlinearities associated with the hydraulic systems. Compared with existing direct ARC controller designs, the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007