GROUP ACTIONS ON SPIN MANIFOLDS(i)

نویسنده

  • G. CHICHILNISKY
چکیده

A generalization of the theorem of V. Bargmann concerning unitary and ray representations is obtained and is applied to the general problem of lifting group actions associated to the extension of structure of a bundle. In particular this is applied to the Poincare group ? of a Lorentz manifold M. It is shown that the topological restrictions needed to lift an action in ? are more stringent than for actions in the proper Poincaré group ?,. Similar results hold for the Euclidean group of a Riemannian manifold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Circle Actions on Homotopy Spheres Not Bounding Spin Manifolds

Smooth circle actions are constructed on odd-dimensional homotopy spheres that do not bound spin manifolds. Examples are given in every dimension for which exotic spheres of the described type exist. A result of H. B. Lawson and S.-T. Yau [15] implies that homotopy spheres not bounding spin manifolds do not admit effective smooth S3 or S03 actions. On the other hand, G. Bredon has shown that ev...

متن کامل

Circle Actions and Z/k-manifolds

We establish a S1-equivariant index theorem for Dirac operators on Z/kmanifolds. As an application, we generalize the Atiyah-Hirzebruch vanishing theorem for S1-actions on closed spin manifolds to the case of Z/k-manifolds. Résumé français On établit un théorème d’indice S-équivariant pour les opérateurs de Dirac sur des Z/k variétés. On donne une application de ce résultat, qui généralise le t...

متن کامل

On Symmetric Group S3 Actions on Spin 4-manifolds

Let X be a smooth, closed, connected spin 4-manifold with b1(X) = 0 and non-positive signature σ(X). In this paper we use Seiberg-Witten theory to prove that if X admits an odd type symmetric group S3 action preserving the spin structure, then b+2 (X) ≥ |σ(X)|/8 + 3 under some non-degeneracy conditions. We also obtain some information about IndS̃3 D, where S̃3 is the extension of S3 by Z2.

متن کامل

Actions of the Torus on 4-manifolds. I

Smooth actions of the 2-dimensional torus group SO(2) x 50(2) on smooth, closed, orientable 4-manifolds are studied. A cross-sectioning theorem for actions without finite nontrivial isotropy groups and with either fixed points or orbits with isotropy group isomorphic to SO(2) yields an equivariant classification for these cases. This classification is made numerically specific in terms of orbit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010