An anatomically unbiased approach for analysis of renal BOLD magnetic resonance images.

نویسندگان

  • Robert I Menzies
  • Andrew Zammit-Mangion
  • Lyam M Hollis
  • Ross J Lennen
  • Maurits A Jansen
  • David J Webb
  • John J Mullins
  • James W Dear
  • Guido Sanguinetti
  • Matthew A Bailey
چکیده

Oxygenation defects may contribute to renal disease progression, but the chronology of events is difficult to define in vivo without recourse to invasive methodologies. Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI) provides an attractive alternative, but the R2* signal is physiologically complex. Postacquisition data analysis often relies on manual selection of region(s) of interest. This approach excludes from analysis significant quantities of biological information and is subject to selection bias. We present a semiautomated, anatomically unbiased approach to compartmentalize voxels into two quantitatively related clusters. In control F344 rats, low R2* clustering was located predominantly within the cortex and higher R2* clustering within the medulla (70.96 ± 1.48 vs. 79.00 ± 1.50; 3 scans per rat; n = 6; P < 0.01) consistent anatomically with a cortico-medullary oxygen gradient. An intravenous bolus of acetylcholine caused a transient reduction of the R2* signal in both clustered segments (P < 0.01). This was nitric oxide dependent and temporally distinct from the hemodynamic effects of acetylcholine. Rats were then chronically infused with angiotensin II (60 ng/min) and rescanned 3 days later. Clustering demonstrated a disruption of the cortico-medullary gradient, producing less distinctly segmented mean R2* clusters (71.30 ± 2.00 vs. 72.48 ± 1.27; n = 6; NS). The acetylcholine-induced attenuation of the R2* signal was abolished by chronic angiotensin II infusion, consistent with reduced nitric oxide bioavailability. This global map of oxygenation, defined by clustering individual voxels on the basis of quantitative nearness, might be more robust in defining deficits in renal oxygenation than the absolute magnitude of R2* in small, manually selected regions of interest defined exclusively by anatomical nearness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging

Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...

متن کامل

Application of Shape Analysis on 3D Images - MRI of Renal Tumors

The image recognotion and the classification of objects according to the images are more in focus of interests, especially in medicine. A mathematical procedure allows us, not only to evaluate the amount of data per se, but also ensures that each image is pro- cessed similarly. Here in this study, we propose the power of shape analysis, in conjunction with neural networks for reducing white n...

متن کامل

A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network

Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...

متن کامل

Blood Oxygenation Level-Dependent MRI to Assess Renal Oxygenation in Renal Diseases: Progresses and Challenges

BOLD-MRI (blood oxygenation-level dependent magnetic resonance imaging) allows non-invasive measurement of renal tissue oxygenation in humans, without the need for contrast products. BOLD-MRI uses the fact that magnetic properties of hemoglobin depend of its oxygenated state:: the higher local deoxyhemoglobin, the higher the so called apparent relaxation rate R2* (sec-1), and the lower local ti...

متن کامل

Use of Magnetic Resonance Imaging in Food Quality Control: A Review

Modern challenges of food science require a new understanding of the determinants of food quality and safety. Application of advanced imaging modalities such as magnetic resonance imaging (MRI) has seen impressive successes and fast growth over the past decade. Since MRI does not have any harmful ionizing radiation, it can be considered as a magnificent tool for the quality control of food prod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 305 6  شماره 

صفحات  -

تاریخ انتشار 2013