Adaptive Stochastic Classifier for Noisy pH-ISFET Measurements
نویسندگان
چکیده
Sensor drift is an inevitable measurement problem and is particularly significant in the long term. The common practice is to have an auto-calibration facility (including standard buffers or accurate integrated actuators) mounted on the monitoring system. However, this approach may not be feasible when the monitoring system is miniaturized to the size of a capsule. In this paper, we develop an adaptive stochastic classifier using analogue neural computation to produce constantly-reliable classification for noisy pH-ISFET measurements. This classifier operates at the signal-level fusion and auto-calibrates its parameters to compensate the sensor drift, with simple learning rules. The ability of the classifier to operate with a drift of 85 % of the pH-ISFET’s full dynamic range is demonstrated. This sensor fusion highlights the potential of neural computation in miniaturized multisensor analytical microsystems such as Lab-in-a-Pill (LIAP) for long-term measurements.
منابع مشابه
Multimodal probe based on ISFET electrochemical microsensors for in-situ monitoring of soil nutrients in agriculture
We report the design of a silicon chip dedicated to the in-situ monitoring of soil nitrogen cycle in wheat crop. Our study shows that ion-sensitive field effect transistor (ISFET) microsensors are suitable for quick on-site or long-term analysis of nutrients measured directly in soil as opposed to soil extracts analysis. Our pH-ISFET recorded soil pH for six months with results in good accordan...
متن کاملDetection of Micrococcus Luteus Biofilm Formation in Microfluidic Environments by pH Measurement Using an Ion-Sensitive Field-Effect Transistor
Biofilm formation in microfluidic channels is difficult to detect because sampling volumes are too small for conventional turbidity measurements. To detect biofilm formation, we used an ion-sensitive field-effect transistor (ISFET) measurement system to measure pH changes in small volumes of bacterial suspension. Cells of Micrococcus luteus (M. luteus) were cultured in polystyrene (PS) microtub...
متن کاملOleyl group-functionalized insulating gate transistors for measuring extracellular pH of floating cells
The extracellular ionic microenvironment has a close relationship to biological activities such as by cellular respiration, cancer development, and immune response. A system composed of ion-sensitive field-effect transistors (ISFET), cells, and program-controlled fluidics has enabled the acquisition of real-time information about the integrity of the cell membrane via pH measurement. Here we ai...
متن کاملDesign of a Single-Chip pH Sensor Using a Conventional 0.6- m CMOS Process
A pH sensor fabricated on a single chip by an unmodified, commercial 0.6m CMOS process is presented. The sensor comprises a circuit for making differential measurements between an ion-sensitive field-effect transistor (ISFET) and a reference FET (REFET). The ISFET has a floating-gate structure and uses the silicon nitride passivation layer as a pH-sensitive insulator. As fabricated, it has a la...
متن کاملDistributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003