A Note on the Nonconforming Finite Elements for Elliptic Problems

نویسندگان

  • Boran Gao
  • Shuo Zhang
  • Ming Wang
  • M. WANG
چکیده

In this paper, a class of rectangular finite elements for 2m-th-oder elliptic boundary value problems in n-dimension (m,n ≥ 1) is proposed in a canonical fashion, which includes the (2m−1)-th Hermite interpolation element (n = 1), the n-linear finite element (m = 1) and the Adini element (m = 2). A nonconforming triangular finite element for the plate bending problem, with convergent order O(h), is also proposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal-Order Multigrid Method for PI Nonconforming Finite Elements

An optimal-order multigrid method for solving second-order elliptic boundary value problems using PI nonconforming finite elements is developed.

متن کامل

Lower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods

The aim of the paper is to introduce a new systematic method that can produce lower bounds for eigenvalues. The main idea is to use nonconforming finite element methods. The general conclusion herein is that if local approximation properties of nonconforming finite element spaces Vh are better than global continuity properties of Vh, corresponding methods will produce lower bounds for eigenvalu...

متن کامل

P1-Nonconforming Quadrilateral Finite Element Methods for Second-Order Elliptic Problems

A P1-nonconforming quadrilateral finite element is introduced for second-order elliptic problems in two dimensions. Unlike the usual quadrilateral nonconforming finite elements, which contain quadratic polynomials or polynomials of degree greater than 2, our element consists of only piecewise linear polynomials that are continuous at the midpoints of edges. One of the benefits of using our elem...

متن کامل

On the Implementation of Mixed Methods as Nonconforming Methods for Second-order Elliptic Problems

In this paper we show that mixed finite element methods for a fairly general second-order elliptic problem with variable coefficients can be given a nonmixed formulation. (Lower-order terms are treated, so our results apply also to parabolic equations.) We define an approximation method by incorporating some projection operators within a standard Galerkin method, which we call a projection fini...

متن کامل

Nonconforming tetrahedral finite elements for fourth order elliptic equations

This paper is devoted to the construction of nonconforming finite elements for the discretization of fourth order elliptic partial differential operators in three spatial dimensions. The newly constructed elements include two nonconforming tetrahedral finite elements and one quasi-conforming tetrahedral element. These elements are proved to be convergent for a model biharmonic equation in three...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010