Quantum implicit computational complexity

نویسندگان

  • Ugo Dal Lago
  • Andrea Masini
  • Margherita Zorzi
چکیده

We introduce a quantum lambda calculus inspired by Lafont’s Soft Linear Logic and capturing the polynomial quantum complexity classes EQP, BQP and ZQP. The calculus is based on the ‘‘classical control and quantum data’’ paradigm. This is the first example of a formal systemcapturing quantumcomplexity classes in the spirit of implicit computational complexity — it is machine-free and no explicit bound (e.g., polynomials) appears in its syntax. © 2009 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Computational Complexity in Curved Spacetime

In this paper we examine how computational complexity analysis of quantum algorithms may be compromised when implicit assumptions of flat spacetime are violated. In particular, we show that in curved spacetime, i.e., all practical contexts, the complexity of standard formulations of Grover’s algorithm (and other iterative quantum algorithms) may reduce to that of classical alternatives. In addi...

متن کامل

A fast wallace-based parallel multiplier in quantum-dot cellular automata

Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...

متن کامل

A fast wallace-based parallel multiplier in quantum-dot cellular automata

Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...

متن کامل

A Note on Universal Measures for Weak Implicit Computational Complexity

This note is a case study for finding universal measures for weak implicit computational complexity. We will instantiate “universal measures” by “dynamic ordinals”, and “weak implicit computational complexity” by “bounded arithmetic”. Concretely, we will describe the connection between dynamic ordinals and witness oracle Turing machines for bounded arithmetic theories.

متن کامل

Solving satisfiability by statistical estimation

What is the powerful ingredient which allows a dramatic speed-up of quantum computation over classical computation ? We propose that this ingredient is an implicit use of the Bayesian probability theory. Furthermore, we argue that both classical and quantum computation are special cases of probability reasoning. On these grounds, introducing Bayesian probability theory in classical computation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 411  شماره 

صفحات  -

تاریخ انتشار 2010