The formation of Tharsis on Mars: What the line-of-sight gravity is telling us

نویسندگان

  • Jean-Pierre Williams
  • Francis Nimmo
  • William B. Moore
  • David A. Paige
چکیده

[1] Line-of-sight (LOS) spacecraft acceleration profiles from the Radio Science Experiment and topography from the Mars Orbiter Laser Altimeter (MOLA) instrument of the Mars Global Surveyor (MGS) are analyzed to estimate the effective elastic thickness (Te) for various regions of Tharsis. We identify a buried basin flanking the Thaumasia Highlands at the southeastern margin of Tharsis. Assuming that this basin results from lithospheric flexure from surface loading by the Thaumasia Highlands, we fit LOS profiles across the feature with a thin-shell, elastic flexure model and find the mountain belt to reflect a value of Te 20 km consistent with a Noachian formation age. We also determine admittances from LOS profiles for five regions across Tharsis and fit them with theoretical admittances calculated using the flexural model. Crater density, surface density, and predominant surface age are found to vary systematically across Tharsis while Te does not. The highest surface density and lowest Te values are obtained for the western portion of Tharsis where crater densities are lowest. Our results imply the majority of the topographic rise was emplaced within the Noachian irrespective of the surface ages. Topographic loading and resurfacing (i.e., volcanic activity) persisted into the Amazonian while becoming increasingly confined to the western margin where the youngest surface ages are found and the eruptive style transitioned from effusive volcanism to shield-forming volcanism as Te increased.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Formation of Tharsis: What the Line-of-sight Data Is Telling

Introduction: Tharsis is a vast, complex topographic rise on Mars extending over 30 million square kilometers that dominates the western hemisphere of Mars. The region has been the locus of large-scale volcanism that has endured for the entirety of the planet’s history, resulting in pervasive fracturing of the crust from lithospheric loading by the voluminous intrusive and extrusive magmatic de...

متن کامل

The Opening of the Valles Marineris Canyons on Mars: Stress Focusing along the Buried Dichotomy Boundary beneath Tharsis

Introduction: Valles Marineris is the largest tectonic canyon in the solar system, with a length of ~2500 km, depths of up to 10 km, and widths in excess of 100 km. The location of this canyon on Tharsis, and its orientation radial to the center of the rise suggests Tharsis control of Valles Marineris tectonism. Tharsis loading dominated the tectonic history of Mars, accounting for the radial g...

متن کامل

Constraints on the Evolution of the Tharsis Region of Mars

Introduction: The western hemisphere of Mars is dominated by topography associated with the Tharsis volcanic province. A range of models for the formation and/or evolution of this region have been proposed and include (1) dynamic support of topography by a large mantle plume [1,2], (2) regional uplift due to underplating of crustal material derived from the northern hemisphere [3], (3) uplift d...

متن کامل

Mars without the equilibrium rotational figure, Tharsis, and the remnant rotational figure

[1] We use a revised partitioning of the planet figure into equilibrium and nonequilibrium contributions that takes into account the presence of an elastic lithosphere to study the Martian gravity field and shape. The equilibrium contribution is associated with the present rotational figure, and the nonequilibrium contribution is dominated by Tharsis and a remnant rotational figure supported by...

متن کامل

Polar Wander of Mars Driven by Degree-1 Mantle Convection and Its Implications for the Formation of the Crustal Dichotomy and the Tharsis Rise

The topography on Mars is dominated by the crustal dichotomy between the northern and southern hemispheres and the Tharsis rise on the equator[1]. No explanation has been offered so far as to why the dichotomy should be in its current orientation rather than another. The geoid is currently dominated by Tharsis [2] and rotational stability suggests that a Tharsis-sized load would induce polar wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008