Interaction between amygdala and neocortical inputs in the perirhinal cortex.

نویسندگان

  • Joe Guillaume Pelletier
  • John Apergis-Schoute
  • Denis Paré
چکیده

The rhinal cortices play a critical role in high-order perceptual/mnemonic functions and constitute the main route for impulse traffic to and from the hippocampus. However, previous work has revealed that neocortical stimuli that activate a large proportion of perirhinal neurons are unable to discharge entorhinal cells. In search of mechanisms that might facilitate impulse transfer from the neocortex to the entorhinal cortex, we have examined changes in excitability produced by activation of the lateral amygdala (LA) in isoflurane-anesthetized animals. LA stimulation activated a large proportion of peri- and entorhinal neurons. However, conditioning LA stimuli did not increase the ability of neocortical inputs to activate entorhinal cells even though such pairing produced marked increases in neocortically evoked field potentials and orthodromic firing in the perirhinal cortex. Moreover, increased neocortically evoked perirhinal field potentials and unit responses persisted when the conditioning LA shock was replaced by another neocortical stimulus at the same or at a different site as the testing shock. This perirhinal paired-pulse facilitation (PPF) was maximal with interstimulus intervals of approximately 100 ms. Intracellular recordings of perirhinal neurons revealed that the PPF was generally associated with a rapid shift in the balance between inhibition and excitation, leading to an overall increase in perirhinal responsiveness. The significance of these findings for the role of the perirhinal cortex is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Associative properties of the perirhinal network.

The perirhinal area is a rostrocaudally oriented cortical region involved in recognition and associative memory. It receives topographically organized transverse projections from high-order neocortical areas and is endowed with intrinsic longitudinal connections that distribute neocortical inputs rostrocaudally. Earlier work has revealed that neocortical inputs strongly recruit perirhinal inter...

متن کامل

Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity

Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...

متن کامل

Propagation of neocortical inputs in the perirhinal cortex.

The perirhinal area is a rostrocaudally oriented strip of cortex in which lesions produce memory and perceptual impairments. It receives topographically organized transverse projections from associative neocortical areas and is endowed with intrinsic longitudinal connections that could distribute neocortical inputs in the rostrocaudal axis. In search of distinguishing network properties that mi...

متن کامل

Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinal-hippocampal circuit.

A number of sensory modalities most likely converge in the rat perirhinal cortex. The perirhinal cortex also interconnects with the amygdala, which plays an important role in various motivational and emotional behaviors. The neural pathway from the perirhinal cortex to the entorhinal cortex is considered one of the main paths into the entorhinal-hippocampal network, which has a crucial role in ...

متن کامل

Differential connectivity of short- vs. long-range extrinsic and intrinsic cortical inputs to perirhinal neurons.

The perirhinal cortex plays a critical role in recognition and associative memory. However, the network properties that support perirhinal contributions to memory are unclear. To shed light on this question, we compared the synaptic articulation of short- and long-range inputs from the perirhinal cortex or temporal neocortex with perirhinal neurons in rats. Iontophoretic injections of the anter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 94 3  شماره 

صفحات  -

تاریخ انتشار 2005