A Hassle-Free Unsupervised Domain Adaptation Method Using Instance Similarity Features
نویسندگان
چکیده
We present a simple yet effective unsupervised domain adaptation method that can be generally applied for different NLP tasks. Our method uses unlabeled target domain instances to induce a set of instance similarity features. These features are then combined with the original features to represent labeled source domain instances. Using three NLP tasks, we show that our method consistently outperforms a few baselines, including SCL, an existing general unsupervised domain adaptation method widely used in NLP. More importantly, our method is very easy to implement and incurs much less computational cost than SCL.
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملUnsupervised Domain Adaptation with Similarity Learning
The objective of unsupervised domain adaptation is to leverage features from a labeled source domain and learn a classifier for an unlabeled target domain, with a similar but different data distribution. Most deep learning approaches to domain adaptation consist of two steps: (i) learn features that preserve a low risk on labeled samples (source domain) and (ii) make the features from both doma...
متن کاملLearning to cluster in order to Transfer across domains and tasks
This paper introduces a novel method to perform transfer learning across domains and tasks, formulating it as a problem of learning to cluster. The key insight is that, in addition to features, we can transfer similarity information and this is sufficient to learn a similarity function and clustering network to perform both domain adaptation and cross-task transfer learning. We begin by reducin...
متن کاملUnsupervised Domain Adaptation for Word Sense Disambiguation using Stacked Denoising Autoencoder
In this paper, we propose an unsupervised domain adaptation for Word Sense Disambiguation (WSD) using Stacked Denoising Autoencoder (SdA). SdA is an unsupervised learning method of obtaining the abstract feature set of input data using Neural Network. The abstract feature set absorbs the difference of domains, and thus SdA can solve a problem of domain adaptation. However, SdA does not always c...
متن کاملUse of Combined Topic Models in Unsupervised Domain Adaptation for Word Sense Disambiguation
Topic models can be used in an unsupervised domain adaptation for Word Sense Disambiguation (WSD). In the domain adaptation task, three types of topic models are available: (1) a topic model constructed from the source domain corpus: (2) a topic model constructed from the target domain corpus, and (3) a topic model constructed from both domains. Basically, three topic features made from each to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015