‘True’ bosonic coupling strength in strongly correlated superconductors

نویسندگان

  • Hideaki Iwasawa
  • Yoshiyuki Yoshida
  • Izumi Hase
  • Kenya Shimada
  • Hirofumi Namatame
  • Masaki Taniguchi
  • Yoshihiro Aiura
چکیده

Clarifying the coupling between electrons and bosonic excitations (phonons or magnetic fluctuations) that mediate the formation of Cooper pairs is pivotal to understand superconductivity. Such coupling effects are contained in the electron self-energy, which is experimentally accessible via angle-resolved photoemission spectroscopy (ARPES). However, in unconventional superconductors, identifying the nature of the electron-boson coupling remains elusive partly because of the significant band renormalization due to electron correlation. Until now, to quantify the electron-boson coupling, the self-energy is most often determined by assuming a phenomenological 'bare' band. Here, we demonstrate that the conventional procedure underestimates the electron-boson coupling depending on the electron-electron coupling, even if the self-energy appears to be self-consistent via the Kramers-Kronig relation. Our refined method explains well the electron-boson and electron-electron coupling strength in ruthenate superconductor Sr2RuO4, calling for a critical revision of the bosonic coupling strength from ARPES self-energy in strongly correlated electron systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropy and strong-coupling effects on the collective mode spectrum of chiral superconductors: application to Sr2RuO41

Recent theories of Sr2RuO4 based on the interplay of strong interactions, spin-orbit coupling and multi-band anisotropy predict chiral or helical ground states with strong anisotropy of the pairing states, with deep minima in the excitation gap, as well as strong phase anisotropy for the chiral ground state. We develop time-dependent mean field theory to calculate the Bosonic spectrum for the c...

متن کامل

Pressure effects on Ca60Al40 metallic glass superconductors

Theoretical computation of the pressure dependence superconducting state parameters of binary Ca60Al40 is reported using model potential formalism. Explicit expressions have been derived for the volume dependence of the electron–phonon coupling strength λ and the Coulomb pseudopotential μ* considering the variation of Fermi momentum KF and Debye temperature ӨD with volume. Well known Ashcroft’s...

متن کامل

Coherence–incoherence crossover in the normal state of iron oxypnictides and importance of Hund's rule coupling

A new class of high-temperature superconductors based on iron and arsenic was recently discovered (Kamihara et al 2008 J. Am. Chem. Soc. 130 3296), with the superconducting transition temperature as high as 55K (Ren et al 2008 Chin. Phys. Lett. 25 2215). Here we show, using microscopic theory, that the normal state of the iron pnictides at high temperatures is highly anomalous, displaying a ver...

متن کامل

Doping dependence of the coupling of electrons to bosonic modes in the single-layer high-temperature Bi2Sr2CuO6 superconductor.

A recent highlight in the study of high-T(c) superconductors is the observation of band renormalization or self-energy effects on the quasiparticles. This is seen in the form of kinks in the quasiparticle dispersions as measured by photoemission and interpreted as signatures of collective bosonic modes coupling to the electrons. Here we compare for the first time the self-energies in an optimal...

متن کامل

Near doping-independent pocket area from an antinodal Fermi surface instability in underdoped high temperature superconductors.

Fermi surface models applied to the underdoped cuprates predict the small pocket area to be strongly dependent on doping whereas quantum oscillations in YBa(2)Cu(3)O(6+x) find precisely the opposite to be true--seemingly at odds with the Luttinger volume. We show that such behavior can be explained by an incommensurate antinodal Fermi surface nesting-type instability--further explaining the dop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013