Stability Modulus Singular Sets
نویسنده
چکیده
A new concept of stability, closely related to that of structural stability, is introduced and applied to the study of Cr endomorphisms with singularities. A map that is stable in this sense will be conjugated to each perturbation that is equivalent to it in a geometric sense. It will be shown that this kind of stability implies Axiom A, Omega-stability and that every critical point is wandering. A partial converse will be shown, providing new examples of C structurally stable maps.
منابع مشابه
Interval fractional integrodifferential equations without singular kernel by fixed point in partially ordered sets
This work is devoted to the study of global solution for initial value problem of interval fractional integrodifferential equations involving Caputo-Fabrizio fractional derivative without singular kernel admitting only the existence of a lower solution or an upper solution. Our method is based on fixed point in partially ordered sets. In this study, we guaranty the existence of special kind of ...
متن کاملVariational Stability and Marginal Functions via Generalized Differentiation
Robust Lipschitzian properties of set-valued mappings and marginal functions play a crucial role in many aspects of variati01~al analysis and its applications, especially for issues related to variational stability and optimizatiou. \Ve develop an approach to variational stability based on generalized differentiation. The principal achievements of this paper include new results on coderivative ...
متن کاملStability in the linearized problem of quantitative elastography
The goal of quantitative elastography is to identify biomechanical parameters from interior displacement data, which are provided by other modalities, such as ultrasound or magnetic resonance imaging. In this paper, we analyze the stability of several linearized problems in quantitative elastography. Our method is based on the theory of redundant systems of linear partial differential equations...
متن کاملHořava-Witten Stability: eppur si muove
We construct exact time-dependent solutions of the supergravity equations of motion in which two initially non-singular branes, one with positive and the other with negative tension, move together and annihilate each other in an all-enveloping spacetime singularity. Among our solutions are the Hořava-Witten solution of heterotic M-theory and a Randall-Sundrum I type solution, both of which are ...
متن کامل2 00 5 Ramanujan ’ s Most Singular Modulus
We present a detailed computation of Ramanujan’s most famous singular modulus, k210, based on the Kronecker Limit Formula.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008