On a Generalization of the Selberg Trace Formula
نویسنده
چکیده
appear (the uj run over an orthonormal basis of automorphic Laplaceeigenforms), so our formula (Theorem 1) is a duality between such integrals and certain geodesic integrals of u. New integral transformations are involved depending on the Laplace-eigenvalue of u. We invert these integral transformations in Section 5, Theorem 2. We develop the formula for finite volume Fuchsian groups, so (as in the case of the Selberg trace formula) T
منابع مشابه
2 The Trace Formula and Hecke Operators
This lecture is intended as a general introduction to the trace formula. We shall describe a formula that is a natural generalization of the Selberg trace formula for compact quotient. Selberg also established trace formulas for noncompact quotients of rank 1, and our formula can be regarded as an analogue for general rank of these. As an application, we shall look at the "finite case" of the t...
متن کاملThe Trace Formula for Noncompact Quotient
1. In [12] and [13] Selberg introduced a trace formula for a compact, locally symmetric space of negative curvature. There is a natural algebra of operators on any such space which commute with the Laplacian. The Selberg trace formula gives the trace of these operators. Selberg also pointed out the importance of deriving such a formula when the symmetric space is assumed only to have finite vol...
متن کاملVariations on a Formula of Selberg
α∈R (∣∣〈ρk, α∨〉+ kα + 1 2kα/2∣∣)! (∣∣〈ρk, α∨〉+ 1 2kα/2∣∣)! • Also in 1982, A. Koranyi uses the Selberg formula to compute the volumes of bounded symmetric domains. • In 1987, K. Aomoto studies a slight generalization of the Selberg integral arising from work on Fock space representations of the Virasoro algebra. Here a connection with hypergeometric functions, specifically Jacobi polynomials is...
متن کاملThe Selberg Trace Formula and Selberg Zeta-Function for Cofinite Kleinian Groups with Finite Dimensional Unitary Representations
For cofinite Kleinian groups, with finite-dimensional unitary representations, we derive the Selberg trace formula. As an application we define the corresponding Selberg zeta-function and compute its divisor, thus generalizing results of Elstrodt, Grunewald and Mennicke to non-trivial unitary representations. We show that the presence of cuspidal elliptic elements sometimes adds ramification po...
متن کاملThe Selberg Trace Formula for Hecke Operators on Cocompact Kleinian Groups
We compute the Selberg trace formula for Hecke operators (also called the trace formula for modular correspondences) in the context of cocompact Kleinian groups with finite-dimentional unitary representations. We give some applications to the distribution of Hecke eigenvalues, and give an analogue of Huber’s theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006