Motivic Homotopy Theory of Group Scheme Actions

نویسنده

  • JEREMIAH HELLER
چکیده

We define an unstable equivariant motivic homotopy category for an algebraic group over a Noetherian base scheme. We show that equivariant algebraic K-theory is representable in the resulting homotopy category. Additionally, we establish homotopical purity and blow-up theorems for finite abelian groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unstable motivic homotopy categories in Nisnevich and cdh-topologies

One can do the motivic homotopy theory in the context of different motivic homotopy categories. One can vary the topology on the category of schemes used to define the homotopy category or one can vary the category of schemes itself considering only schemes satisfying certain conditions. The category obtained by taking smooth schemes and the Nisnevich topology seems to play a distinguished role...

متن کامل

Cohomology operations and algebraic geometry

This manuscript is based on a ten hours series of seminars I delivered in August of 2003 at the Nagoya Institute of Technology as part of the workshop on homotopy theory organized by Norihiko Minami and following the Kinosaki conference in honor of Goro Nishida. One of the most striking applications of homotopy theory in “exotic” contexes is Voevodsky’s proof of the Milnor Conjecture. This conj...

متن کامل

Galois Equivariance and Stable Motivic Homotopy Theory

For a finite Galois extension of fields L/k with Galois group G, we study a functor from the G-equivariant stable homotopy category to the stable motivic homotopy category over k induced by the classical Galois correspondence. We show that after completing at a prime and η (the motivic Hopf map) this results in a full and faithful embedding whenever k is real closed and L = k[i]. It is a full a...

متن کامل

The Homotopy Coniveau Filtration

We examine the “homotopy coniveau tower” for a general cohomology theory on smooth k-schemes, satisfying some natural axioms, and give a new proof that the layers of this tower for K-theory agree with motivic cohomology. We show how these constructions lead to a tower of functors on the Morel-Voevodsky stable homotopy category, and identify this stable homotopy coniveau tower with Voevodsky’s s...

متن کامل

Motivic Cell Structures

An object in motivic homotopy theory is called cellular if it can be built out of motivic spheres using homotopy colimit constructions. We explore some examples and consequences of cellularity. We explain why the algebraic K-theory and algebraic cobordism spectra are both cellular, and prove some Künneth theorems for cellular objects.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015