Controllable positive exchange bias via redox-driven oxygen migration.
نویسندگان
چکیده
Ionic transport in metal/oxide heterostructures offers a highly effective means to tailor material properties via modification of the interfacial characteristics. However, direct observation of ionic motion under buried interfaces and demonstration of its correlation with physical properties has been challenging. Using the strong oxygen affinity of gadolinium, we design a model system of GdxFe1-x/NiCoO bilayer films, where the oxygen migration is observed and manifested in a controlled positive exchange bias over a relatively small cooling field range. The exchange bias characteristics are shown to be the result of an interfacial layer of elemental nickel and cobalt, a few nanometres in thickness, whose moments are larger than expected from uncompensated NiCoO moments. This interface layer is attributed to a redox-driven oxygen migration from NiCoO to the gadolinium, during growth or soon after. These results demonstrate an effective path to tailoring the interfacial characteristics and interlayer exchange coupling in metal/oxide heterostructures.
منابع مشابه
MnO nanoparticles as the cause of ferromagnetism in bulk dilute Mn-doped ZnO
Articles you may be interested in Bias voltage-controlled ferromagnetism switching in undoped zinc oxide thin film memory device Appl. Electrical control of exchange bias via oxygen migration across CoO-ZnO nanocomposite barrier Appl. High repetition rate ultrashort laser cuts a path through fog Appl.
متن کاملExchange bias driven by the Dzyaloshinskii-Moriya interaction and ferroelectric polarization at G-type antiferromagnetic perovskite interfaces.
Exchange bias is usually rationalized invoking spin pinning effects caused by uncompensated antiferromagnetic interfaces. However, for compensated antiferromagnets other extrinsic factors, such as interface roughness or spin canting, have to be considered to produce a small uncompensation. As an alternative, here we propose two (related) possible mechanisms, driven by the intrinsic Dzyaloshinsk...
متن کاملElectrically driven redox process in cerium oxides.
Cerium oxides have attracted much attention because of their uses in three-way catalysts and other catalyst applications. The redox reaction of cerium oxides, as the basis of their use as catalysts, usually takes place at high temperature (>600 K) and/or low oxygen partial pressure. There have been continuous efforts to lower the operating temperatures of cerium oxide further to improve the per...
متن کاملInterval Analysis of Controllable Workspace for Cable Robots
Workspace analysis is one of the most important issues in the robotic parallel manipulator design. However, the unidirectional constraint imposed by cables causes this analysis more challenging in the cabledriven redundant parallel manipulators. Controllable workspace is one of the general workspace in the cabledriven redundant parallel manipulators due to the dependency on geometry parameter...
متن کاملDirect Activation of RhoA by Reactive Oxygen Species Requires a Redox-Sensitive Motif
BACKGROUND Rho family GTPases are critical regulators of the cytoskeleton and affect cell migration, cell-cell adhesion, and cell-matrix adhesion. As with all GTPases, their activity is determined by their guanine nucleotide-bound state. Understanding how Rho proteins are activated and inactivated has largely focused on regulatory proteins such as guanine nucleotide exchange factors (GEFs) and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature communications
دوره 7 شماره
صفحات -
تاریخ انتشار 2016