Push-pull effect of surround illumination on excitatory and inhibitory inputs to mudpuppy retinal ganglion cells.
نویسندگان
چکیده
1. Changes in membrane potential and conductance were measured in on-centre and off-centre ganglion cells during the responses to illumination of different portions of the receptive field. 2. In on-centre ganglion cells the sustained depolarizing response to steady illumination of the receptive field centre was associated with a net increase in conductance. In the presence of centre illumination, stimulation of the surround with an annulus of light caused a hyperpolarization and a net decrease in conductance, and the reversal potential of the light-evoked response was shifted in a negative direction. In the absence of centre illumination the same annular stimulus caused a hyperpolarization and a net increase in conductance. 3. In off-centre ganglion cells the sustained hyperpolarizing response to centre illumination was associated with a net increase in conductance. In the presence of centre illumination, stimulation of the surround with an annulus caused a depolarization and a net decrease in conductance, and the reversal potential of the light-evoked response was shifted in a positive direction. In the absence of centre illumination the same annulus caused a depolarization and a net increase in conductance. 4. The results indicate that illumination of the receptive field surround can affect both the excitatory and inhibitory sustained inputs to a given ganglion cell in a 'push-pull' manner, by decreasing the synaptic input that was increased by centre illumination and increasing the synaptic input of opposite sign. The relative effect of a given surround illumination on these two inputs, and hence the sign and magnitude of the net conductance change, varied with the amount of centre illumination.
منابع مشابه
Excitatory and inhibitory contributions to receptive fields of alpha-like retinal ganglion cells in mouse.
The ON and OFF pathways that emerge at the first synapse in the retina are generally thought to be streamed in parallel to higher visual areas, but recent work shows cross talk at the level of retinal ganglion cells. The ON pathway drives inhibitory inputs onto some OFF ganglion cells, such that these neurons show "push-pull" convergence of OFF-excitation and ON-disinhibition. In this study we ...
متن کاملInner retinal inhibition shapes the receptive field of retinal ganglion cells in primate
The centre-surround organisation of receptive fields is a feature of most retinal ganglion cells (RGCs) and is critical for spatial discrimination and contrast detection. Although lateral inhibitory processes are known to be important in generating the receptive field surround, the contribution of each of the two synaptic layers in the primate retina remains unclear. Here we studied the spatial...
متن کاملLocal edge detectors: a substrate for fine spatial vision at low temporal frequencies in rabbit retina.
Visual acuity is limited by the size and density of the smallest retinal ganglion cells, which correspond to the midget ganglion cells in primate retina and the beta-ganglion cells in cat retina, both of which have concentric receptive fields that respond at either light-On or light-Off. In contrast, the smallest ganglion cells in the rabbit retina are the local edge detectors (LEDs), which res...
متن کاملSynaptic inputs to the ganglion cells in the tiger salamander retina
The postsynaptic potentials (PSPs) that form the ganglion cell light response were isolated by polarizing the cell membrane with extrinsic currents while stimulating at either the center or surround of the cell's receptive field. The time-course and receptive field properties of the PSPs were correlated with those of the bipolar and amacrine cells. The tiger salamander retina contains four main...
متن کاملRegulation of spatial selectivity by crossover inhibition.
Signals throughout the nervous system diverge into parallel excitatory and inhibitory pathways that later converge on downstream neurons to control their spike output. Converging excitatory and inhibitory synaptic inputs can exhibit a variety of temporal relationships. A common motif is feedforward inhibition, in which an increase (decrease) in excitatory input precedes a corresponding increase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of physiology
دوره 388 شماره
صفحات -
تاریخ انتشار 1987