Link homology and categorification

نویسنده

  • Mikhail Khovanov
چکیده

This is a short survey of algebro-combinatorial link homology theories which have the Jones polynomial and other link polynomials as their Euler characteristics. 2000 Mathematics Subject Classification: 57M25, 57Q45.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MATRIX FACTORIZATIONS AND DOUBLE LINE IN sln QUANTUM LINK INVARIANT

L. Kauffman introduced a graphical link invariant which is the normalized Jones polynomial [4][5]. It is well-known that the polynomial is derived from the fundamental representation of the quantum group Uq(sl2). Further, G. Kuperberg constructed a graphical link invariant associated with the fundamental representation of the quantum group Uq(sl3) [10]. H. Murakami, T. Ohtsuki and S. Yamada int...

متن کامل

The Chromatic Polynomial of Fatgraphs and Its Categorification

Motivated by Khovanov homology and relations between the Jones polynomial and graph polynomials, we construct a homology theory for embedded graphs from which the chromatic polynomial can be recovered as the Euler characteristic. For plane graphs, we show that our chromatic homology can be recovered from the Khovanov homology of an associated link. We apply this connection with Khovanov homolog...

متن کامل

V n ) LINK INVARIANT AND MATRIX FACTORIZATIONS

M. Khovanov and L. Rozansky gave a categorification of the HOMFLY-PT polynomial. This study is a generalization of the Khovanov-Rozansky homology. We define a homology associated to the quantum (sln,∧Vn) link invariant, where ∧Vn is the set of the fundamental representations of the quantum group of sln. In the case of a [1, k]-colored link diagram, we prove that its homology is a link invariant...

متن کامل

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE délivré par l’Université Toulouse III – Paul Sabatier en MATHÉMATIQUES PURES

A categorification of a polynomial link invariant is an homological invariant which contains the polynomial one as its graded Euler characteristic. This field has been initiated by Khovanov categorification of the Jones polynomial. Later, P. Ozsváth and Z. Szabó gave a categorification of Alexander polynomial. Besides their increased abilities for distinguishing knots, this new invariants seem ...

متن کامل

Functoriality Results for Khovanov’s Link Homology

My research at UCSD has focused on advancing our understanding of Khovanov’s homology theory for links and link cobordisms, first introduced in [10]. His theory is a “categorification” of the Jones polynomial V (L), so described because it associates to any link L a complex Kh(L) of bigraded modules whose graded Euler characteristic is V (L). Not only is the homotopy type of Kh(L) a link invari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006