Equivalence Analysis of Mass and Inertia for Simulated Space Manipulator Based on Constant Mass
نویسندگان
چکیده
A simulated space manipulator is designed to verify the reliability of the zero-gravity simulation system, which can avoid the risks of experiments involving the space manipulator in this zero-gravity ground system. To achieve similarity between the simulated and actual space manipulators, the mass, barycenter, and inertia must be considered. In this study, a counterweight component is designed and an optimization method is used to match the mass parameters of the simulated joints to those of the space joints. In addition, an equivalence method is used to establish the relationship between the torques of these two manipulators.
منابع مشابه
On a Moving Base Robotic Manipulator Dynamics
There are many occasions where the base of a robotic manipulator is attached to a moving platform, such as on a moving ship, terrain or space shuttle. In this paper a dynamic model of a robotic manipulator mounted on a moving base is derived using both Newton-Euler and Lagrange-Euler methods. The presented models are simulated for a Mitsubishi PA10-6CE robotic manipulator characteristics mounte...
متن کاملCharacteristics analysis of joint space inverse mass matrix for the optimal design of a 6-DOF parallel manipulator
An optimal designmethod for the Gough–Stewart platformmanipulators based on dynamic isotropy is proposed. First, a dynamic isotropy measure is derived from the analysis of the natural frequencies of a Stewart platform at a neutral pose using the inverse of the joint space mass matrix. Next, considering a specific Gough–Stewart platform (SGSP), it is found that, when the payload inertia matrix i...
متن کاملInertial Properties in Robotic Manipulation: An Object-Level Framework
Consideration of dynamics is critical in the analysis, design, and control of robot systems. This article presents an extensive study of the dynamic properties of several important classes of robotic structures and proposes a number of general dynamic strategies for their coordination and control. This work is a synthesis of both previous and new results developed within the task-oriented opera...
متن کاملDynamic Analysis of the Biomechanical Model of Head Load Impact Using Differential Transform Method
The dynamic analysis of the biomechanical model of the head load impact using the Differential Transform Method is presented in this paper. In many parts of the world, the problem of traumatic brain injuries (TBI) has led to neurodegenerative dementing disorders and diseases as a result of head load impact from sporting activities, accidents involving the head, etc. have serious effects on huma...
متن کاملOptimal Trajectory of Flexible Manipulator with Maximum Load Carrying Capacity
In this paper, a new formulation along with numerical solution for the problem of finding a point-to-point trajectory with maximum load carrying capacities for flexible manipulators is proposed. For rigid manipulators, the major limiting factor in determining the Dynamic Load Carrying Capacity (DLCC) is the joint actuator capacity. The flexibility exhibited by light weight robots or by robots o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017