Impact of thermal annealing on wettability and antifouling characteristics of alginate poly-l-lysine polyelectrolyte multilayer films.
نویسندگان
چکیده
Polyelectrolyte multilayers (PEMs) of poly-l-lysine (PLL) and alginic acid sodium salt (Alg) are fabricated applying the layer by layer technique and annealed at a constant temperature; 37, 50 and 80°C, for 72h. Atomic force microscopy reveals changes in the topography of the PEM, which is changing from a fibrillar to a smooth surface. Advancing contact angle in water varies from 36° before annealing to 93°, 77° and 95° after annealing at 37, 50 and 80°C, respectively. Surface energy changes after annealing were calculated from contact angle measurements performed with organic solvents. Quartz crystal microbalance with dissipation, contact angle and fluorescence spectroscopy measurements show a significant decrease in the adsorption of the bovine serum albumin protein to the PEMs after annealing. Changes in the physical properties of the PEMs are interpreted as a result of the reorganization of the polyelectrolytes in the PEMs from a layered structure into complexes where the interaction of polycations and polyanions is enhanced. This work proposes a simple method to endow bio-PEMs with antifouling characteristics and tune their wettability.
منابع مشابه
Fabrication and Characterization of Chitosan/Alginate Multilayer Composite Membrane Supported by a Porous Poly (Acrylonitrile) Substrate for Pervaporation Dehydration of Alcohol
Chitosan (CS) and alginate (Alg) are complementary in their membrane performance, but the combination of them is normally difcult to use due to their different solubilities. Layer-by-Layer deposition appears to be an effective method for improving the separation efciency of a composite membrane. In this work, the polyelectrolyte multilayer composite membranes (PEMCMs) wer...
متن کاملSteel Coated with Cationic Poly (Ethylenimine) (PEI) and Anionic Poly (Vinylsulfate) (PVS) Polyelectrolyte Multilayer Nanofilm with Different Benzotriazole Inhibitor Concentrations
Nano-films consisting of an alternating sequence of positively and negatively charged polyelectrolyteshave been prepared by means of the electrostatic layer-by-layer sequential assembly technique on mildsteels. The mild steels were pretreated electrochemically to modify the mild steel surface. The modificationof the mild steel surface resulted in increasing the adhesion of the obtained nano-fil...
متن کاملLayer-by-Layer Assembly of Biopolyelectrolytes onto Thermo/pH-Responsive Micro/Nano-Gels
This review deals with the layer-by-layer (LbL) assembly of polyelectrolyte multilayers of biopolymers, polypeptides (i.e., poly-l-lysine/poly-l-glutamic acid) and polysaccharides (i.e., chitosan/dextran sulphate/sodium alginate), onto thermo- and/or pH-responsive micro- and nano-gels such as those based on synthetic poly(N-isopropylacrylamide) (PNIPAM) and poly(acrylic acid) (PAA) or biodegrad...
متن کاملPolyelectrolyte multilayer films as substrates for photoreceptor cells.
Reconstruction of extracellular matrix substrates for delivery of functional photoreceptors is crucial in pathologies such as retinal degeneration and age-related macular degeneration. In this study, we assembled polyelectrolyte films using the layer-by-layer deposition method. The buildup of three different films composed of poly(L-lysine)/chondroitin sulfate (PLL/CSA), poly(L-lysine)/poly(sty...
متن کاملImprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling.
Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent cross-linking. Custom synthesized, peptide mimicking polycations composed of histidine grafted po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Colloids and surfaces. B, Biointerfaces
دوره 145 شماره
صفحات -
تاریخ انتشار 2016