Bayesian inference for Gaussian graphical models beyond decomposable graphs

نویسندگان

  • Kshitij Khare
  • Abhishek Saha
چکیده

Bayesian inference for graphical models has received much attention in the literature in recent years. It is well known that when the graph G is decomposable, Bayesian inference is significantly more tractable than in the general non-decomposable setting. Penalized likelihood inference on the other hand has made tremendous gains in the past few years in terms of scalability and tractability. Bayesian inference, however, has not had the same level of success, though a scalable Bayesian approach has its respective strengths, especially in terms of quantifying uncertainty. To address this gap, we propose a scalable and flexible novel Bayesian approach for estimation and model selection in Gaussian undirected graphical models. We first develop a class of generalized G-Wishart distributions with multiple shape parameters for an arbitrary underlying graph. This class contains the G-Wishart distribution as a special case. We then introduce the class of Generalized Bartlett (GB) graphs, and derive an efficient Gibbs sampling algorithm to obtain posterior draws from generalized G-Wishart distributions corresponding to a GB graph. The class of Generalized Bartlett graphs contains the class of decomposable graphs as a special case, but is substantially larger than the class of decomposable graphs. We proceed to derive theoretical properties of the proposed Gibbs sampler. We then demonstrate that the proposed Gibbs sampler is scalable to significantly higher dimensional problems as compared to using an accept-reject or a Metropolis-Hasting algorithm. Finally, we show the efficacy of the proposed approach on simulated and real data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian inference in probabilistic graphical models

This thesis consists of four papers studying structure learning and Bayesian inference in probabilistic graphical models for both undirected and directed acyclic graphs (DAGs). Paper A presents a novel algorithm, called the Christmas tree algorithm (CTA), that incrementally construct junction trees for decomposable graphs by adding one node at a time to the underlying graph. We prove that CTA w...

متن کامل

Learning Gaussian Graphical Models With Fractional Marginal Pseudo-likelihood

We propose a Bayesian approximate inference method for learning the dependence structure of a Gaussian graphical model. Using pseudo-likelihood, we derive an analytical expression to approximate the marginal likelihood for an arbitrary graph structure without invoking any assumptions about decomposability. The majority of the existing methods for learning Gaussian graphical models are either re...

متن کامل

Bayesian Inference for General Gaussian Graphical Models With Application to Multivariate Lattice Data.

We introduce efficient Markov chain Monte Carlo methods for inference and model determination in multivariate and matrix-variate Gaussian graphical models. Our framework is based on the G-Wishart prior for the precision matrix associated with graphs that can be decomposable or non-decomposable. We extend our sampling algorithms to a novel class of conditionally autoregressive models for sparse ...

متن کامل

Bayesian covariance matrix estimation using a mixture of decomposable graphical models

Estimating a covariance matrix efficiently and discovering its structure are important statistical problems with applications in many fields. This article takes a Bayesian approach to estimate the covariance matrix of Gaussian data. We use ideas from Gaussian graphical models and model selection to construct a prior for the covariance matrix that is a mixture over all decomposable graphs, where...

متن کامل

Accelerating Bayesian Structural Inference for Non-Decomposable Gaussian Graphical Models

We make several contributions in accelerating approximate Bayesian structural inference for non-decomposable GGMs. Our first contribution is to show how to efficiently compute a BIC or Laplace approximation to the marginal likelihood of non-decomposable graphs using convex methods for precision matrix estimation. This optimization technique can be used as a fast scoring function inside standard...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015