Lower Bounds for Las Vegas Automata by Information Theory
نویسندگان
چکیده
We show that the size of a Las Vegas automaton and the size of a complete, minimal deterministic automaton accepting a regular language are polynomially related. More precisely, we show that if a regular language L is accepted by a Las Vegas automaton having r states such that the probability for a definite answer to occur is at least p, then r ≥ np, where n is the number of the states of the minimal deterministic automaton accepting L. Earlier this result has been obtained in [2] by using a reduction to one-way Las Vegas communication protocols, but here we give a direct proof based on information theory.
منابع مشابه
On the Power of Las Vegas for One-way Communication Complexity, Finite Automata, and Polynomial-time Computations
The study of the computational power of randomized computations is one of the central tasks of complexity theory. The main goal of this paper is the comparison of the power of Las Vegas computation and deterministic respectively nondeterministic computation. We investigate the power of Las Vegas computation for the complexity measures of one-way communication, nite automata and polynomial-time ...
متن کاملOn the Power of Las Vegas for One-Way Communication Complexity, OBDDs, and Finite Automata
The study of the computational power of randomized computations is one of the central tasks of complexity theory. The main goal of this paper is the comparison of the power of Las Vegas computation and deterministic respectively nondeterministic computation. We investigate the power of Las Vegas computation for the complexity measures of one-way communication, ordered binary decision diagrams, ...
متن کاملUnary Probabilistic and Quantum Automata on Promise Problems
We continue the systematic investigation of probabilistic and quantum finite automata (PFAs and QFAs) on promise problems by focusing on unary languages. We show that bounded-error QFAs are more powerful than PFAs. But, in contrary to the binary problems, the computational powers of Las-Vegas QFAs and bounded-error PFAs are equivalent to deterministic finite automata (DFAs). Lastly, we present ...
متن کاملSimple Average-Case Lower Bounds for Approximate Near-Neighbor from Isoperimetric Inequalities
We prove an Ω(d/ log sw nd ) lower bound for the average-case cell-probe complexity of deterministic or Las Vegas randomized algorithms solving approximate near-neighbor (ANN) problem in ddimensional Hamming space in the cell-probe model with w-bit cells, using a table of size s. This lower bound matches the highest known worst-case cell-probe lower bounds for any static data structure problems...
متن کاملAffine counter automata
We introduce an affine generalization of counter automata, and analyze their ability as well as affine finite automata. Our contributions are as follows. We show that there is a language that can be recognized by exact realtime affine counter automata but by neither 1-way deterministic pushdown automata nor realtime deterministic k-counter automata. We also show that a certain promise problem, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ITA
دوره 37 شماره
صفحات -
تاریخ انتشار 2003