Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains.
نویسندگان
چکیده
The human cytomegalovirus (HCMV) early glycoprotein products of the US11 and US2 open reading frames cause increased turnover of major histocompatibility complex (MHC) class I heavy chains. Since US2 is homologous to another HCMV gene (US3), we hypothesized that the US3 gene product also may affect MHC class I expression. In cells constitutively expressing the HCMV US3 gene, MHC class I heavy chains formed a stable complex with beta 2-microglobulin. However, maturation of the N-linked glycan of MHC class I heavy chains was impaired in US3+ cells. The glycoprotein product of US3 (gpUS3) occurs mostly in a high-mannose form and coimmunoprecipitates with beta 2-microglobulin associated class I heavy chains. Mature class I molecules were detected at steady state on the surface of US3+ cells, as in control cells. Substantial perinuclear accumulation of heavy chains was observed in US3+ cells. The data suggest that gpUS3 impairs egress of MHC class I heavy chains from the endoplasmic reticulum.
منابع مشابه
Analysis of human cytomegalovirus US3 gene products.
Similar to other herpesviruses, human cytomegalovirus remains in the infected host following resolution of the primary infection. The ability to persist in the host after primary infection is believed to be strongly influenced by the ability of HCMV to down-regulate immune recognition of infected cells. One of the genes contributing to immune evasion is the US3 gene. The US3 gene has been shown...
متن کاملInhibition of HLA-DR assembly, transport, and loading by human cytomegalovirus glycoprotein US3: a novel mechanism for evading major histocompatibility complex class II antigen presentation.
Human cytomegalovirus (HCMV) establishes persistent lifelong infections and replicates slowly. To withstand robust immunity, HCMV utilizes numerous immune evasion strategies. The HCMV gene cassette encoding US2 to US11 encodes four homologous glycoproteins, US2, US3, US6, and US11, that inhibit the major histocompatibility complex class I (MHC-I) antigen presentation pathway, probably inhibitin...
متن کاملA short isoform of human cytomegalovirus US3 functions as a dominant negative inhibitor of the full-length form.
Human cytomegalovirus encodes four unique short (US) region proteins, each of which is independently sufficient for causing the down-regulation of major histocompatibility complex (MHC) class I molecules on the cell surface. This down-regulation enables infected cells to evade recognition by cytotoxic T lymphocytes (CTLs) but makes them vulnerable to lysis by natural killer (NK) cells, which ly...
متن کاملThe ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP.
Human cytomegalovirus (HCMV) inhibits MHC class I antigen presentation by a sequential multistep process involving a family of unique short (US) region-encoded glycoproteins. US3 retains class I molecules, whereas US2 and US11 mediate the cytosolic degradation of heavy chains by the proteosomes. In US6-transfected cells, however, intracellular transport of class I molecules is impaired because ...
متن کاملHuman cytomegalovirus US3 chimeras containing US2 cytosolic residues acquire major histocompatibility class I and II protein degradation properties.
Human cytomegalovirus (HCMV) glycoprotein US2 increases the proteasome-mediated degradation of major histocompatibility complex (MHC) class I heavy chain (HC), class II DR-alpha and DM-alpha proteins, and HFE, a nonclassical MHC protein. US2-initiated degradation of MHC proteins apparently involves the recruitment of cellular proteins that participate in a process known as endoplasmic reticulum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 93 21 شماره
صفحات -
تاریخ انتشار 1996