Csiszár's Divergences for Non-negative Matrix Factorization: Family of New Algorithms

نویسندگان

  • Andrzej Cichocki
  • Rafal Zdunek
  • Shun-ichi Amari
چکیده

In this paper we discus a wide class of loss (cost) functions for non-negative matrix factorization (NMF) and derive several novel algorithms with improved efficiency and robustness to noise and outliers. We review several approaches which allow us to obtain generalized forms of multiplicative NMF algorithms and unify some existing algorithms. We give also the flexible and relaxed form of the NMF algorithms to increase convergence speed and impose some desired constraints such as sparsity and smoothness of components. Moreover, the effects of various regularization terms and constraints are clearly shown. The scope of these results is vast since the proposed generalized divergence functions include quite large number of useful loss functions such as the squared Euclidean distance,Kulback-Leibler divergence, Itakura-Saito, Hellinger, Pearson’s chi-square, and Neyman’s chi-square distances, etc. We have applied successfully the developed algorithms to blind (or semi blind) source separation (BSS) where sources can be generally statistically dependent, however they satisfy some other conditions or additional constraints such as nonnegativity, sparsity and/or smoothness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization

We propose a class of multiplicative algorithms for Nonnegative Matrix Factorization (NMF) which are robust with respect to noise and outliers. To achieve this, we formulate a new family generalized divergences referred to as the Alpha-Beta-divergences (AB-divergences), which are parameterized by the two tuning parameters, alpha and beta, and smoothly connect the fundamental Alpha-, Betaand Gam...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

Automatic relevance determination in nonnegative matrix factorization with the -divergence

This paper addresses the estimation of the latent dimensionality in nonnegative matrix factorization (NMF) with the -divergence. The -divergence is a family of cost functions that includes the squared euclidean distance, Kullback-Leibler (KL) and Itakura-Saito (IS) divergences as special cases. Learning the model order is important as it is necessary to strike the right balance between data fid...

متن کامل

Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations

Nonnegative matrix factorization (NMF) and its extensions such as Nonnegative Tensor Factorization (NTF) have become prominent techniques for blind sources separation (BSS), analysis of image databases, data mining and other information retrieval and clustering applications. In this paper we propose a family of efficient algorithms for NMF/NTF, as well as sparse nonnegative coding and represent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006