Dynamics of male meiotic recombination frequency during plant development using Fluorescent Tagged Lines in Arabidopsis thaliana

نویسندگان

  • Fan Li
  • Nico De Storme
  • Danny Geelen
چکیده

Meiotic homologous recombination plays a central role in creating genetic variability, making it an essential biological process relevant to evolution and crop breeding. In this study, we used pollen-specific fluorescent tagged lines (FTLs) to measure male meiotic recombination frequency during the development of Arabidopsis thaliana. Interestingly, a subset of pollen grains consistently shows loss of fluorescence expression in tested lines. Using nine independent FTL intervals, the spatio-temporal dynamics of male recombination frequency was assessed during plant development, considering both shoot type and plant age as independent parameters. In most genomic intervals assayed, male meiotic recombination frequency is highly consistent during plant development, showing no significant change between different shoot types and during plant aging. However, in some genomic regions, such as I1a and I5a, a small but significant effect of either developmental position or plant age were observed, indicating that the meiotic CO frequency in those intervals varies during plant development. Furthermore, from an overall view of all nine genomic intervals assayed, both primary and tertiary shoots show a similar dynamics of increasing recombination frequency during development, while secondary and lateral shoots remain highly stable. Our results provide new insights in the dynamics of male meiotic recombination frequency during plant development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A puromycin-sensitive aminopeptidase is essential for meiosis in Arabidopsis thaliana.

Puromycin-sensitive aminopeptidases (PSAs) participate in a variety of proteolytic events essential for cell growth and viability, and in fertility in a broad range of organisms. We have identified and characterized an Arabidopsis thaliana mutant (mpa1) from a pool of T-DNA tagged lines that lacks PSA activity. This line exhibits reduced fertility, producing shorter siliques (fruits) bearing a ...

متن کامل

A new seed-based assay for meiotic recombination in Arabidopsis thaliana.

Meiotic recombination is a fundamental biological process that plays a central role in the evolution and breeding of plants. We have developed a new seed-based assay for meiotic recombination in Arabidopsis. The assay is based on the transformation of green and red fluorescent markers expressed under a seed-specific promoter. A total of 74 T-DNA markers were isolated, sequenced and mapped both ...

متن کامل

The Arabidopsis thaliana PARTING DANCERS Gene Encoding a Novel Protein Is Required for Normal Meiotic Homologous Recombination□D

Recent studies of meiotic recombination in the budding yeast and the model plant Arabidopsis thaliana indicate that meiotic crossovers (COs) occur through two genetic pathways: the interference-sensitive pathway and the interferenceinsensitive pathway. However, few genes have been identified in either pathway. Here, we describe the identification of the PARTING DANCERS (PTD) gene, as a gene wit...

متن کامل

Cold-Induced Male Meiotic Restitution in Arabidopsis thaliana Is Not Mediated by GA-DELLA Signaling

Short periods of cold stress induce male meiotic restitution and diploid pollen formation in Arabidopsis thaliana by specifically interfering with male meiotic cytokinesis. Similar alterations in male meiotic cell division and gametophytic ploidy stability occur when gibberellic acid (GA) signaling is perturbed in developing anthers. In this study, we found that exogenous application of GA prim...

متن کامل

The Arabidopsis thaliana PARTING DANCERS gene encoding a novel protein is required for normal meiotic homologous recombination.

Recent studies of meiotic recombination in the budding yeast and the model plant Arabidopsis thaliana indicate that meiotic crossovers (COs) occur through two genetic pathways: the interference-sensitive pathway and the interference-insensitive pathway. However, few genes have been identified in either pathway. Here, we describe the identification of the PARTING DANCERS (PTD) gene, as a gene wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017