The Origins of Cooperative Bacterial Communities
نویسندگان
چکیده
Bacteria live in complex multispecies communities. Intimately interacting bacterial cells are ubiquitous on biological and mineral surfaces in all habitats. Molecular and cellular biologists have unraveled some key mechanisms that modulate bacterial interactions, but the ecology and evolution of these associations remain poorly understood. One debate has focused on the relative importance of cooperation among cells in bacterial communities. Some researchers suggest that communication and cooperation, both within and among bacterial species, have produced emergent properties that give such groups a selective advantage. Evolutionary biologists have countered that the appearance of group-level traits should be viewed with caution, as natural selection almost invariably favors selfishness. A recent theory by Morris, Lenski, and Zinser, called the Black Queen Hypothesis, gives a new perspective on this debate (J. J. Morris, R. E. Lenski, and E. R. Zinser, mBio 3(2):e00036-12, 2012). These authors present a model that reshapes a decades-old idea: cooperation among species can be automatic and based upon purely selfish traits. Moreover, this hypothesis stands in contrast to the Red Queen Hypothesis, which states that species are in constant evolutionary conflict. Two assumptions serve as the core of the Black Queen model. First, bacterial functions are often leaky, such that cells unavoidably produce resources that benefit others. Second, the receivers of such by-products will tend to delete their own costly pathways for those products, thus building dependency into the interactions. Although not explicitly required in their model, an emergent prediction is that the initiation of such dependency can favor the spread of more obligate coevolved partnerships. This new paradigm suggests that bacteria might often form interdependent cooperative interactions in communities and moreover that bacterial cooperation should leave a clear genomic signature via complementary loss of shared diffusible functions.
منابع مشابه
GAME OF COORDINATION FOR BACTERIAL PATTERN FORMATION: A FINITE AUTOMATA MODELLING
In this paper, we use game theory to describe the emergence of self-organization and consequent pattern formation through communicative cooperation in Bacillus subtilis colonies. The emergence of cooperative regime is modelled as an n-player Assurance game, with the bacterial colonies as individual players. The game is played iteratively through cooperative communication, and mediated by exchan...
متن کاملCooperation in microbial communities and their biotechnological applications
Microbial communities are increasingly utilized in biotechnology. Efficiency and productivity in many of these applications depends on the presence of cooperative interactions between members of the community. Two key processes underlying these interactions are the production of public goods and metabolic cross-feeding, which can be understood in the general framework of ecological and evolutio...
متن کاملCompetitive and cooperative metabolic interactions in bacterial communities.
Revealing the ecological principles that shape communities is a major challenge of the post-genomic era. To date, a systematic approach for describing inter-species interactions has been lacking. Here we independently predict the competitive and cooperative potential between 6,903 bacterial pairs derived from a collection of 118 species' metabolic models. We chart an intricate association betwe...
متن کاملParallel Mutations Result in a Wide Range of Cooperation and Community Consequences in a Two-Species Bacterial Consortium
Multi-species microbial communities play a critical role in human health, industry, and waste remediation. Recently, the evolution of synthetic consortia in the laboratory has enabled adaptation to be addressed in the context of interacting species. Using an engineered bacterial consortium, we repeatedly evolved cooperative genotypes and examined both the predictability of evolution and the phe...
متن کاملBacterial communities in PM2.5 and PM10 inside the cage broiler houses before and after disinfection
Background: Air in broiler houses is contaminated with considerable amounts of microbial aerosols, which affects the health of humans and birds. Thorough cleaning and disinfecting should be carried out to reduce particulate concentrations and minimize airborne microorganisms. Aims: To evaluate the effects of cleaning and disinfecting measures on bacterial commu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2012