Detection of Visual Concepts and Annotation of Images Using Ensembles of Trees for Hierarchical Multi-Label Classification

نویسندگان

  • Ivica Dimitrovski
  • Dragi Kocev
  • Suzana Loskovska
  • Saso Dzeroski
چکیده

In this paper, we present a hierarchical multi-label classification system for visual concepts detection and image annotation. Hierarchical multi-label classification (HMLC) is a variant of classification where an instance may belong to multiple classes at the same time and these classes/labels are organized in a hierarchy. The system is composed of two parts: feature extraction and classification/annotation. The feature extraction part provides global and local descriptions of the images. These descriptions are then used to learn a classifier and to annotate an image with the corresponding concepts. To this end, we use predictive clustering trees (PCTs), which are able to classify target concepts that are organized in a hierarchy. Our approach to HMLC exploits the annotation hierarchy by building a single predictive clustering tree that can simultaneously predict all of the labels used to annotate an image. Moreover, we constructed ensembles (random forests) of PCTs, to improve the predictive performance. We tested our system on the image database from the ImageCLEF@ICPR 2010 photo annotation task. The extensive experiments conducted on the benchmark database show that our system has very high predictive performance and can be easily scaled to large number of visual concepts and large amounts of data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Visual Concepts and Annotation of Images Using Predictive Clustering Trees

In this paper, we present a multiple targets classification system for visual concepts detection and image annotation. Multiple targets classification (MTC) is a variant of classification where an instance may belong to multiple classes at the same time. The system is composed of two parts: feature extraction and classification/annotation. The feature extraction part provides global and local d...

متن کامل

ImageCLEF 2009 Medical Image Annotation Task: PCTs for Hierarchical Multi-Label Classification

In this paper, we describe an approach for the automatic medical image annotation task of the 2009 CLEF cross-language image retrieval campaign (ImageCLEF). This work is focused on the process of feature extraction from radiological images and hierarchical multi-label classification. To extract features from the images we used an edge histogram descriptor as global feature and SIFT histogram as...

متن کامل

Scalable Image Annotation by Summarizing Training Samples into Labeled Prototypes

By increasing the number of images, it is essential to provide fast search methods and intelligent filtering of images. To handle images in large datasets, some relevant tags are assigned to each image to for describing its content. Automatic Image Annotation (AIA) aims to automatically assign a group of keywords to an image based on visual content of the image. AIA frameworks have two main sta...

متن کامل

Hierarchical annotation of medical images

In this paper, we describe an approach for the automatic medical annotation task of the 2008 CLEF cross-language image retrieval campaign (ImageCLEF). The data comprise 12076 fully annotated images according to the IRMA code. This work is focused on the process of feature extraction from images and hierarchical multi-label classification. To extract features from the images we used a technique ...

متن کامل

Automated Image Annotation for Semantic Indexing and Retrieval of Medical Images

Medical image retrieval to search for clinically relevant and visually similar images depicting suspecious lesions have been attracting research interest. Content-based image retrieval (CBIR) is an important alternate and complement to traditional text-based retrieval using keywords. We have implemented CBIR system based on effective use of texture information within the images obtained by stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010