Genetic perturbation of the putative cytoplasmic membrane-proximal salt bridge aberrantly activates alpha(4) integrins.

نویسندگان

  • Yoichi Imai
  • Eun Jeong Park
  • Dan Peer
  • António Peixoto
  • Guiying Cheng
  • Ulrich H von Andrian
  • Christopher V Carman
  • Motomu Shimaoka
چکیده

alpha(4) integrins play a pivotal role in leukocyte migration and tissue-specific homing. The ability of integrins to bind ligand is dynamically regulated by activation-dependent conformational changes triggered in the cytoplasmic domain. An NMR solution structure defined a putative membrane-proximal salt bridge between the alpha(IIb)beta(3) integrin cytoplasmic tails, which restrains integrins in their low-affinity state. However, the physiological importance of this salt bridge in alpha(4) integrin regulation remains to be elucidated. To address this question, we disrupted the salt bridge in murine germ line by mutating the conserved cytoplasmic arginine R(GFFKR) in alpha(4) integrins. In lymphocytes from knock-in mice (alpha(4)-R/A(GFFKR)), alpha(4)beta(1) and alpha(4)beta(7) integrins exhibited constitutively up-regulated ligand binding. However, transmigration of these cells across VCAM-1 and MAdCAM-1 substrates, or across endothelial monolayers, was reduced. Perturbed detachment of the tail appeared to cause the reduced cell migration of alpha(4)-R/A(GFFKR) lymphocytes. In vivo, alpha(4)-R/A(GFFKR) cells exhibited increased firm adhesion to Peyer patch venules but reduced homing to the gut. Our results demonstrate that the membrane-proximal salt bridge plays a critical role in supporting proper alpha(4) integrin adhesive dynamics. Loss of this interaction destabilizes the nonadhesive conformation, and thereby perturbs the properly balanced cycles of adhesion and deadhesion required for efficient cell migration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic analysis of β1 integrin “activation motifs” in mice

Akey feature of integrins is their ability to regulate the affinity for ligands, a process termed integrin activation. The final step in integrin activation is talin binding to the NPXY motif of the integrin beta cytoplasmic domains. Talin binding disrupts the salt bridge between the alpha/beta tails, leading to tail separation and integrin activation. We analyzed mice in which we mutated the t...

متن کامل

Breaking the integrin hinge. A defined structural constraint regulates integrin signaling.

Integrins are heterodimeric (alpha, beta) cell adhesion receptors. We demonstrate that point mutations in the cytoplasmic domains of both the alpha and beta subunits promote constitutive signaling by the integrin alphaIIbbeta3. By generating charge reversal mutations, we show these "activating" mutations may act by disrupting a potential salt bridge between the membrane-proximal portions of the...

متن کامل

Interactions of platelet integrin alphaIIb and beta3 transmembrane domains in mammalian cell membranes and their role in integrin activation.

Clustering and occupancy of platelet integrin alpha(IIb)beta(3) (GPIIb-IIIa) generate biologically important signals: conversely, intracellular signals increase the integrins' affinity, leading to integrin activation; both forms of integrin signaling play important roles in hemostasis and thrombosis. Indirect evidence implicates interactions between integrin alpha and beta transmembrane domains...

متن کامل

The structure of an integrin/talin complex reveals the basis of inside-out signal transduction.

Fundamental to cell adhesion and migration, integrins are large heterodimeric membrane proteins that uniquely mediate inside-out signal transduction, whereby adhesion to the extracellular matrix is activated from within the cell by direct binding of talin to the cytoplasmic tail of the beta integrin subunit. Here, we report the first structure of talin bound to an authentic full-length beta int...

متن کامل

Association of the membrane proximal regions of the alpha and beta subunit cytoplasmic domains constrains an integrin in the inactive state.

The adhesiveness of integrins is regulated through a process termed "inside-out" signaling. To understand the molecular mechanism of integrin inside-out signaling, we generated K562 stable cell lines that expressed LFA-1 (alpha(L)beta(2)) or Mac-1 (alpha(M)beta(2)) with mutations in the cytoplasmic domain. Complete truncation of the beta(2) cytoplasmic domain, but not a truncation that retained...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 112 13  شماره 

صفحات  -

تاریخ انتشار 2008