Lattice path enumeration and Toeplitz matrices

نویسندگان

  • Stefan Felsner
  • Daniel Heldt
چکیده

This paper is about counting lattice paths. Examples are the paths counted by Catalan, Motzkin or Schröder numbers. We identify lattice paths with walks on some path-like graph. The entries of the nth power of the adjacency matrix are the number of paths of length nwith prescribed start and end position. The adjacency matrices turn out to be Toeplitz matrices. Explicit expressions for eigenvalues and eigenvectors of these matrices are known. This yields expressions for the numbers of paths in the form of trigonometric sums. We give many examples of known sequences that have such expressions. We also deal with cases where no explicit expressions for eigenvalues and eigenvectors of the relevant matrices are known. In some of these cases it is possible to use the characteristic polynomial to get linear recurrence relations for the numbers in question.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMPUTATIONAL ENUMERATION OF POINT DEFECT CLUSTERS IN DOUBLE- LATTICE CRYSTALS

The cluster representation matrices have already been successfully used to enumerate close-packed vacancy clusters in all single-lattice crystals [I, 2]. Point defect clusters in double-lattice crystals may have identical geometry but are distinct due to unique atomic postions enclosing them. The method of representation matrices is extended to make it applicable to represent and enumerate ...

متن کامل

Integrals over classical Groups, Random permutations, Toda and Toeplitz lattices

2 Two-Toda lattice and reductions (Hänkel and Toeplitz) 17 2.1 Two-Toda on Moment Matrices and Identities for τ -Functions 18 2.2 Reduction to Hänkel matrices: the standard Toda lattice and a Virasoro algebra of constraints . . . . . . . . . . . . . . . . . 26 2.3 Reduction to Toeplitz matrices: two-Toda Lattice and an SL(2,Z)algebra of constraints . . . . . . . . . . . . . . . . . . . . . . 29...

متن کامل

An application of Fibonacci numbers into infinite Toeplitz matrices

The main purpose of this paper is to define a new regular matrix by using Fibonacci numbers and to investigate its matrix domain in the classical sequence spaces $ell _{p},ell _{infty },c$ and $c_{0}$, where $1leq p

متن کامل

The Enumeration of Lattice Paths 3

We survey old and new results on the enumeration of lattice paths in the plane with a given number of turns, including the recent developments on the enumeration of nonintersecting lattice paths with a given number of turns. Motivations to consider such enumeration problems come from various elds, e.g. probability, statistics, combinatorics, and commutative algebra. We show that the appropriate...

متن کامل

Fiber-optic signal processor with applications to matrix-vector multiplication and lattice filtering.

A new fiber-optic signal processor is proposed to implement systolic matrix-vector multipliers and lattice filters. 10(9) multiplications/sec can be achieved with currently available components for matrix-vector multiplications that involve Toeplitz matrices. A 2 x 2 (Toeplitz) matrix-vector multiplier has been experimentally demonstrated using single-mode fibers and directional couplers. The f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010