Pivoted Cauchy-Like Preconditioners for Regularized Solution of Ill-Posed Problems
نویسندگان
چکیده
Many ill-posed problems are solved using a discretization that results in a least squares problem or a linear system involving a Toeplitz matrix. The exact solution to such problems is often hopelessly contaminated by noise, since the discretized problem is quite ill conditioned, and noise components in the approximate null-space dominate the solution vector. Therefore we seek an approximate solution that does not have large components in these directions. We use a preconditioned conjugate gradient algorithm to compute such a regularized solution. A unitary change of coordinates transforms the Toeplitz matrix to a Cauchy-like matrix, and we choose our preconditioner to be a low rank Cauchy-like matrix determined in the course of Gu’s fast modified complete pivoting algorithm. We show that if the kernel of the ill-posed problem is smooth, then this preconditioner has desirable properties: the largest singular values of the preconditioned matrix are clustered around one, the smallest singular values, corresponding to the lower subspace, remain small, and the upper and lower spaces are relatively unmixed. The preconditioned algorithm costs only O(n lgn) operations per iteration for a problem with n variables. The effectiveness of the preconditioner for filtering noise is demonstrated on three examples.
منابع مشابه
Cauchy-like Preconditioners for Two-Dimensional Ill-Posed Problems
Ill-conditioned matrices with block Toeplitz, Toeplitz block (BTTB) structure arise from the discretization of certain ill-posed problems in signal and image processing. We use a preconditioned conjugate gradient algorithm to compute a regularized solution to this linear system given noisy data. Our preconditioner is a Cauchy-like block diagonal approximation to an orthogonal transformation of ...
متن کاملTwo-level preconditioners for regularized inverse problems I: Theory
We compare additive and multiplicative Schwarz preconditioners for the iterative solution of regularized linear inverse problems, extending and complementing earlier results of Hackbusch, King, and Rieder. Our main ndings are that the classical convergence estimates are not useful in this context: rather, we observe that for regularized ill-posed problems with relevant parameter values the addi...
متن کاملPriorconditioners for linear systems
The construction of suitable preconditioners for the solution of linear systems by iterative methods continues to receive a lot of interest. Traditionally, preconditioners are designed to accelerate convergence of iterative methods to the solution of the linear system. However, when truncated iterative methods are used as regularized solvers of ill-posed problems, the rate of convergence is sel...
متن کاملSolving Ill-Posed Cauchy Problems by a Krylov Subspace Method
We study the numerical solution of a Cauchy problem for a self-adjoint elliptic partial differential equation uzz − Lu = 0 in three space dimensions (x, y, z) , where the domain is cylindrical in z. Cauchy data are given on the lower boundary and the boundary values on the upper boundary is sought. The problem is severely illposed. The formal solution is written as a hyperbolic cosine function ...
متن کاملNonlinear regularization methods for ill-posed problems
In this paper we consider nonlinear ill-posed problems with piecewise constant or strongly varying solutions. A class of nonlinear regularization methods is proposed, in which smooth approximations to the Heavyside function are used to reparameterize functions in the solution space by an auxiliary function of levelset type. The analysis of the resulting regularization methods is carried out in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 21 شماره
صفحات -
تاریخ انتشار 1999