Line Bundles on Super Riemann Surfaces

نویسندگان

  • Steven B. Giddings
  • Philip C. Nelson
چکیده

We give the elements of a theory of line bundles, their classification, and their connec-tions on super Riemann surfaces. There are several salient departures from the classicalcase. For example, the dimension of the Picard group is not constant, and there is nonatural hermitian form on Pic. Furthermore, the bundles with vanishing Chern numberaren’t necessarily flat, nor can every such bundle be represented by an antiholomorphicconnection on the trivial bundle. Nevertheless the latter representation is still useful ininvestigating questions of holomorphic factorization. We also define a subclass of all con-nections, those which are compatible with the superconformal structure. The compatibilityconditions turn out to be constraints on the curvature 2-form. Disciplines Physical Sciences and Mathematics | Physics Comments At the time of publication, author Philip C. Nelson was affiliated with Boston University. Currently, he is a faculty member in the Physics & Astronomy Department at the University of Pennsylvania. This journal article is available at ScholarlyCommons: http://repository.upenn.edu/physics_papers/572 BUHEP-87-48 HUTP-87/A080 Line Bundles on Super Riemann Surfaces

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Uniformization of N=2 Superconformal and N=1 Superanalytic Dewitt Super-riemann Surfaces

We prove a general uniformization theorem for N=2 superconformal and N=1 superanalytic DeWitt super-Riemann surfaces, showing that in general an N=2 superconformal (resp. N=1 superanalytic) DeWitt superRiemann surface is N=2 superconformally (resp., N=1 superanalytically) equivalent to a manifold with transition functions containing no odd functions of the even variable if and only if the first...

متن کامل

Vector Bundles on Riemann Surfaces

1. Differentiable Manifolds 2 2. Complex Manifolds 3 2.1. Riemann Surfaces of Genus One 4 2.2. Constructing Riemann Surfaces as Curves in P 6 2.3. Constructing Riemann Surfaces as Covers 9 2.4. Constructing Riemann Surfaces by Glueing 10 3. Topological Vector Bundles 11 3.1. The Tangent and Cotangent Bundles 13 3.2. Interlude: Categories, Complexes and Exact Sequences 14 3.3. Metrics on Vector ...

متن کامل

Admissible Hermitian Metrics on Families of Line Bundles over Certain Degenerating Riemann Surfaces

We show that a family of line bundles of degree zero over a plumbing family of Riemann surfaces with a separating (resp. non-separating) node p admits a nice (resp. almost nice) family of flat p-singular Hermitian metrics. As a consequence, we give necessary and sufficient conditions for a family of line bundles over such families of Riemann surfaces to admit an (almost) nice family of p-singul...

متن کامل

Introduction to Compact Riemann Surfaces

The theory of Riemann surfaces is a classical field of mathematics where geometry and analysis play equally important roles. The purpose of these notes is to present some basic facts of this theory to make this book more self contained. In particular we will deal with classical descriptions of Riemann surfaces, Abelian differentials, periods on Riemann surfaces, meromorphic functions, theta fun...

متن کامل

Math8811: Complex Analysis

1. Classical Topics 2 1.1. Complex numbers 2 1.2. Differentiability 2 1.3. Cauchy-Riemann Equations 3 1.4. The Riemann Sphere 4 1.5. Möbius transformations 5 1.6. Integration 6 1.7. Cauchy’s Theorems and Applications 7 1.8. Properties of Analytic Functions 9 1.9. The Winding Number 11 1.10. Singularities 12 1.11. Laurent Series 13 1.12. Residue Theory 15 1.13. Normal Families 18 1.14. The Riema...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017