A Hierarchical Geodesic Model for Diffeomorphic Longitudinal Shape Analysis

نویسندگان

  • Nikhil Singh
  • Jacob Hinkle
  • Sarang C. Joshi
  • P. Thomas Fletcher
چکیده

Hierarchical linear models (HLMs) are a standard approach for analyzing data where individuals are measured repeatedly over time. However, such models are only applicable to longitudinal studies of Euclidean data. In this paper, we propose a novel hierarchical geodesic model (HGM), which generalizes HLMs to the manifold setting. Our proposed model explains the longitudinal trends in shapes represented as elements of the group of diffeomorphisms. The individual level geodesics represent the trajectory of shape changes within individuals. The group level geodesic represents the average trajectory of shape changes for the population. We derive the solution of HGMs on diffeomorphisms to estimate individual level geodesics, the group geodesic, and the residual geodesics. We demonstrate the effectiveness of HGMs for longitudinal analysis of synthetically generated shapes and 3D MRI brain scans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Principal Geodesic Analysis in Diffeomorphic Image Registration

Computing a concise representation of the anatomical variability found in large sets of images is an important first step in many statistical shape analyses. In this paper, we present a generative Bayesian approach for automatic dimensionality reduction of shape variability represented through diffeomorphic mappings. To achieve this, we develop a latent variable model for principal geodesic ana...

متن کامل

Geodesic Shape Regression in the Framework of Currents

Shape regression is emerging as an important tool for the statistical analysis of time dependent shapes. In this paper, we develop a new generative model which describes shape change over time, by extending simple linear regression to the space of shapes represented as currents in the large deformation diffeomorphic metric mapping (LDDMM) framework. By analogy with linear regression, we estimat...

متن کامل

Geodesic shape regression with multiple geometries and sparse parameters

Many problems in medicine are inherently dynamic processes which include the aspect of change over time, such as childhood development, aging, and disease progression. From medical images, numerous geometric structures can be extracted with various representations, such as landmarks, point clouds, curves, and surfaces. Different sources of geometry may characterize different aspects of the anat...

متن کامل

Bayesian principal geodesic analysis for estimating intrinsic diffeomorphic image variability

In this paper, we present a generative Bayesian approach for estimating the low-dimensional latent space of diffeomorphic shape variability in a population of images. We develop a latent variable model for principal geodesic analysis (PGA) that provides a probabilistic framework for factor analysis in the space of diffeomorphisms. A sparsity prior in the model results in automatic selection of ...

متن کامل

Statistics on diffeomorphisms via tangent space representations.

In this paper, we present a linear setting for statistical analysis of shape and an optimization approach based on a recent derivation of a conservation of momentum law for the geodesics of diffeomorphic flow. Once a template is fixed, the space of initial momentum becomes an appropriate space for studying shape via geodesic flow since the flow at any point along the geodesic is completely dete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Information processing in medical imaging : proceedings of the ... conference

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013