Interval prediction for graded multi-label classification
نویسندگان
چکیده
منابع مشابه
Exploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملAn Evaluation of Graded Sense Disambiguation using Word Sense Induction
Word Sense Disambiguation aims to label the sense of a word that best applies in a given context. Graded word sense disambiguation relaxes the single label assumption, allowing for multiple sense labels with varying degrees of applicability. Training multi-label classifiers for such a task requires substantial amounts of annotated data, which is currently not available. We consider an alternate...
متن کاملUsing Entropy as a Measure of Acceptance for Multi-label Classification
Multi-label classifiers allow us to predict the state of a set of responses using a single model. A multi-label model is able to make use of the correlation between the labels to potentially increase the accuracy of its prediction. Critical applications of multi-label classifiers (such as medical diagnoses) require that the system’s confidence in prediction also be provided with the multi-label...
متن کاملMulti-Group Classification Using Interval Linea rProgramming
Among various statistical and data mining discriminant analysis proposed so far for group classification, linear programming discriminant analysis has recently attracted the researchers’ interest. This study evaluates multi-group discriminant linear programming (MDLP) for classification problems against well-known methods such as neural networks and support vector machine. MDLP is less compli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition Letters
دوره 49 شماره
صفحات -
تاریخ انتشار 2014