A Classifier-guided Sampling Method for Computationally Expensive, Discrete-variable, Discontinuous Design Problems

نویسندگان

  • Peter B. Backlund
  • David W. Shahan
  • Carolyn C. Seepersad
چکیده

Metamodel-based design is a well-established method for providing fast and accurate approximations of expensive computer models to enable faster optimization and rapid design space exploration. Traditionally, a metamodel is developed by fitting a surface to a set of training points that are generated with an expensive computer model or simulation. A requirement of this process is that the function being approximated is continuous. However, many engineering problems have variables that are discrete and a function response that is discontinuous in nature. In this paper, a classifier-guided sampling method is presented that can be used for optimization and design space exploration of expensive computer models that have discrete variables and discontinuous responses. The method is tested on a set of example problems. Results show that the method significantly improves the rate of convergence towards known global optima, on average, when compared to random search.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mode Pursuing Sampling Method for Discrete Variable Optimization on Expensive Black-Box Functions

Based on previously developed Mode Pursuing Sampling (MPS) approach for continuous variables, a variation of MPS for discrete variable global optimization problems on expensive black-box functions is developed in this paper. The proposed method, namely, the discrete variable MPS (D-MPS) method, differs from its continuous variable version not only on sampling in a discrete space, but moreover, ...

متن کامل

Continuous Discrete Variable Optimization of Structures Using Approximation Methods

Optimum design of structures is achieved while the design variables are continuous and discrete. To reduce the computational work involved in the optimization process, all the functions that are expensive to evaluate, are approximated. To approximate these functions, a semi quadratic function is employed. Only the diagonal terms of the Hessian matrix are used and these elements are estimated fr...

متن کامل

Role of Heuristic Methods with variable Lengths In ANFIS Networks Optimum Design and Training

ANFIS systems have been much considered due to their acceptable performance in terms of creation of fuzzy classifier and training. One main challenge in designing an ANFIS system is to achieve an efficient method with high accuracy and appropriate interpreting capability. Undoubtedly, type and location of membership functions and the way an ANFIS network is trained are of considerable effect on...

متن کامل

Optimum Structural Design with Discrete Variables Using League Championship Algorithm

In this paper a league championship algorithm (LCA) is developed for structural optimization where the optimization variables are of discrete type and the set of the values possibly obtained by each variable is also given. LCA is a relatively new metaheuristic algorithm inspired from sport championship process. In LCA, each individual can choose to approach to or retreat from other individuals ...

متن کامل

PERFORMANCE OF DIFFERENT ANT-BASED ALGORITHMS FOR OPTIMIZATION OF MIXED VARIABLE DOMAIN IN CIVIL ENGINEERING DESIGNS

Ant colony optimization algorithms (ACOs) have been basically introduced to discrete variable problems and applied to different research domains in several engineering fields. Meanwhile, abundant studies have been already involved to adapt different ant models to continuous search spaces. Assessments indicate competitive performance of ACOs on discrete or continuous domains. Therefore, as poten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012