The Erwin Schrr Odinger International Institute for Mathematical Physics Rayleigh{type Isoperimetric Inequality with a Homogeneous Magnetic Field Rayleigh-type Isoperimetric Inequality with a Homogeneous Magnetic Eld

ثبت نشده
چکیده

We prove that the two dimensional free magnetic Schrr odinger operator, with a xed constant magnetic eld and Dirichlet boundary conditions on a planar domain with a given area, attains its smallest possible eigenvalue if the domain is a disk. We also give some rough bounds on the lowest magnetic eigenvalue of the disk. Running title: Magnetic Rayleigh-type inequality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rayleigh Waves in a Homogeneous Magneto-Thermo Voigt-Type Viscoelastic Half-Space under Initial Surface Stresses

This paper deals with the propagation of magneto-thermo Rayleigh waves in a homogeneous viscoelastic half-space under initial stress. It has been observed that velocity of Rayleigh waves depends on viscosity, magnetic field, temperature and initial stress of the half-space. The frequency equation for Rayleigh waves under the effect of magnetic field, stress and temperature for both viscoelastic...

متن کامل

The Erwin Schrr Odinger International Institute for Mathematical Physics on the Lieb{thirring Estimates for the Pauli Operator on the Lieb-thirring Estimates for the Pauli Operator

We establish Lieb-Thirring type estimates for the sums P k j k j of the negative eigenvalues k of the two-dimensionalPauli operator with a non-homogeneous magnetic eld perturbed by a decreasing electric potential.

متن کامل

The application of isoperimetric inequalities for nonlinear eigenvalue problems

Our aim is to show the interplay between geometry analysis and applications of the theory of isoperimetric inequalities for some nonlinear problems. Reviewing the isoperimetric inequalities valid on Minkowskian plane we show that we can get estimations of physical quantities, namely, estimation on the first eigenvalue of nonlinear eigenvalue problems, on the basis of easily accessible geometric...

متن کامل

The Erwin Schrr Odinger International Institute for Mathematical Physics Strong Magnetic Elds, Dirichlet Boundaries, and Spectral Gaps Strong Magnetic Elds, Dirichlet Boundaries, and Spectral Gaps

We consider magnetic Schrr odinger operators H(~ a) = (?ir ? ~ a(x)) 2(x) = 0g, where B is the magnetic eld associated with ~ a, and M ~ a = fx;~ a(x) = 0g, we prove that H(~ a) converges to the (Dirichlet) Laplacian on the closed set M in the strong resolvent sense, as ! 1, provided the set M n M ~ a has measure 0. Corresponding results on norm resolvent convergence are then used to show that ...

متن کامل

Institute for Mathematical Physics on Separation of Variables in the Schrr Odinger Equation for a Particle Interacting with External Field on Separation of Variables in the Schrr Odinger Equation for a Particle Interacting with External Eld

We obtain the most general form of the vector-potential of the electromagnetic eld A enabling separation of variables in the (1+2)-dimensional Schrr odinger equation (SE). Using this result we have carried out variable separation for a class of Schrr odinger equations that contains as particular cases SE with Coulomb scalar potential and SE for a particle interacting with the constant magnetic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996