Comparative effects of melatonin, L-deprenyl, Trolox and ascorbate in the suppression of hydroxyl radical formation during dopamine autoxidation in vitro.

نویسندگان

  • H Khaldy
  • G Escames
  • J León
  • F Vives
  • J D Luna
  • D Acuña-Castroviejo
چکیده

Degeneration of nigrostriatal dopaminergic neurons is the major pathogenic substrate of Parkinson's disease (PD). Inhibitors of monoamine oxidase B (MAO-B) have been used in the treatment of PD and at least one of them, i.e., deprenyl, also displays antioxidant activity. Dopamine (DA) autoxidation produces reactive oxygen species implicated in the loss of dopaminergic neurons in the nigrostriatal pathway. In this study we compared the effects of melatonin with those of deprenyl and vitamins E and C in preventing the hydroxyl radical (8OH) generation during DA oxidation. The rate of production of 2,3-dihydroxybenzoate (2,3-DHBA) in the presence of salicylate, an *OH scavenger, was used to detect the in vitro generation of *OH during iron-catalyzed oxidation of DA. The results showed a dose-dependent effect of melatonin, deprenyl and vitamin E in counteracting DA autoxidation, whereas vitamin C had no effect. Comparative analyses between the effect of these antioxidants showed that the protective effect of melatonin against DA autoxidation was significantly higher than that of the other compounds tested. Also, when melatonin plus deprenyl were added to the incubation medium, a potentiation of the antioxidant effect was found. These findings suggest that antioxidants may be useful in brain protection against toxicity of reactive oxygen species produced during DA oxidation, and melatonin, alone or in combination with deprenyl, may be an important component of the brain's antioxidant defenses to protect it from dopaminergic neurodegeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromium(III)-induced 8-hydroxydeoxyguanosine in DNA and its reduction by antioxidants: comparative effects of melatonin, ascorbate, and vitamin E.

Chromium compounds are well documented carcinogens. Cr(III) is more reactive than Cr(VI) toward DNA under in vitro conditions. In the present study, we investigated the ability of Cr(III) to induce oxidative DNA damage by examining the formation of 8-hydroxydeoxyguanosine (8-OH-dG) in calf thymus DNA incubated with CrCl(3) plus H(2)O(2). We measured 8-OH-dG using HPLC with electrochemical detec...

متن کامل

Synergistic effects of melatonin and deprenyl against MPTP-induced mitochondrial damage and DA depletion.

Previous studies showed a synergistic effect of melatonin and deprenyl against dopamine (DA) autoxidation in vitro. Since oxidative stress is implicated in Parkinson's disease (PD), we explored the effects of melatonin plus deprenyl administration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in C57/Bl6 mice. Melatonin, but not deprenyl prevents the inhibition of mitochondri...

متن کامل

O-3: Effect of Melatonin Treatment on Developmental Potential of Somatic Cell Nuclear- Transferred Mouse Oocytes In Vitro

Background Melatonin (N-acetyl-5- methoxytryptamine) is mainly synthesized and secreted in the pineal gland, ovary, testes, bone marrow, retina and lens in mammalian species. It is involved in the detoxification of ROS and protects embryos from oxidative damage. Melatonin acts as a potential free radical scavenger, including peroxyl radical and hydroxyl radical. In addition, it can stimulate th...

متن کامل

Phytic Acid Inhibits Lipid Peroxidation In Vitro

Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid pe...

متن کامل

In vitro antioxidant effects of barberry fruit extracts

A vast majority of the studies addressing the free radicals including hydroxyl radical is a damage compound of biochemical molecules such as DNA, proteins and lipids. When free radicals specially hydroxyl radical are not adequately removed from the body, it may damage biological macromolecules, leading to a variety of disease occurs. Therefore, the body should be protected by an enzymatic or no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of pineal research

دوره 29 2  شماره 

صفحات  -

تاریخ انتشار 2000