Radioactive 198Au-Doped Nanostructures with Different Shapes for In Vivo Analyses of Their Biodistribution, Tumor Uptake, and Intratumoral Distribution
نویسندگان
چکیده
With Au nanocages as an example, we recently demonstrated that radioactive (198)Au could be incorporated into the crystal lattice of Au nanostructures for simple and reliable quantification of their in vivo biodistribution by measuring the γ radiation from (198)Au decay and for optical imaging by detecting the Cerenkov radiation. Here we extend the capability of this strategy to synthesize radioactive (198)Au nanostructures with a similar size but different shapes and then compare their biodistribution, tumor uptake, and intratumoral distribution using a murine EMT6 breast cancer model. Specifically, we investigated Au nanospheres, nanodisks, nanorods, and cubic nanocages. After PEGylation, an aqueous suspension of the radioactive Au nanostructures was injected into a tumor-bearing mouse intravenously, and their biodistribution was measured from the γ radiation while their tumor uptake was directly imaged using the Cerenkov radiation. Significantly higher tumor uptake was observed for the Au nanospheres and nanodisks relative to the Au nanorods and nanocages at 24 h postinjection. Furthermore, autoradiographic imaging was performed on thin slices of the tumor after excision to resolve the intratumoral distributions of the nanostructures. While both the Au nanospheres and nanodisks were only observed on the surfaces of the tumors, the Au nanorods and nanocages were distributed throughout the tumors.
منابع مشابه
Docetaxel delivery using folate-targeted liposomes: in vitro and in vivo studies
Objective(s): Folate-targeted liposomes have been well considered in folate receptor (FR) overexpressing cells including MCF-7 and 4T1 cells in vitro and in vivo. The objective of this study is to design an optimum folate targeted liposomal formulations which show the best liposome cell uptake to tumor cells.Material and Methods: In this study, we prepared and characterized different targ...
متن کاملEffect of intratumoral administration on biodistribution of 64Cu-labeled nanoshells
BACKGROUND Gold nanoshells are excellent agents for photothermal ablation cancer therapy and are currently under clinical trial for solid tumors. Previous studies showed that passive delivery of gold nanoshells through intravenous administration resulted in limited tumor accumulation, which represents a major challenge for this therapy. In this report, the impact of direct intratumoral administ...
متن کاملPreparation and Biodistribution of [67Ga]-labeled- oxytocin for SPECT purposes
Background: Oxytocin (OT) is a paracrine hormone with various biological activities and many sex organs in both sexes, as well as many tumor cells have shown to have related receptors. In this study the development of a receptor imaging tracer for possible tumor imaging has been described. Materials and Methods: OT was successively labeled with [67Ga]-gallium chloride after conjugation with fre...
متن کاملEvaluation of 99m Tc-MccJ25 peptide analog in mice bearing B16F10 melanoma tumor as a diagnostic radiotracer
Objective(s): Despite recent advances in treatment modalities, cancer remains a major source of morbidity and mortality throughout the world. Currently, the development of sensitive and specific molecular imaging probes for early diagnosis of cancer is still a problematic challenge. Previous studies have been shown that some of the antimicrobial peptides (AMPs) exhibit...
متن کاملInfluence of DOTA chelators on radiochemical purity and biodistribution in xenografted mice of 177Lu- and 90Y-Rituximab
Introduction This work presents a comparative biological evaluation of 90Y- and 177Lu- labelled DOTA-SCN and DOTA-NHS conjugated to Rituximab in tumour-bearing mice. Materials and methods Two DOTA derivatives, p-SCN-Bn-DOTA and DOTA-NHS-ester were conjugated to Rituximab and then freeze-dried kit formulations were prepared, as previously described [1]. Tissue distribution was investigated in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014