A Flexible Semi-Automatic Approach for Glioblastoma multiforme Segmentation

نویسندگان

  • Jan Egger
  • Miriam H. A. Bauer
  • Daniela Kuhnt
  • Christoph Kappus
  • Barbara Carl
  • Bernd Freisleben
  • Christopher Nimsky
چکیده

—Gliomas are the most common primary brain tumors, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the preoperative tumor volume is essential. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming process that can be overcome with the help of segmentation methods. In this paper, a flexible semi-automatic approach for grade IV glioma segmentation is presented. The approach uses a novel segmentation scheme for spherical objects that creates a directed 3D graph. Thereafter, the minimal cost closed set on the graph is computed via a polynomial time s-t cut, creating an optimal segmentation of the tumor. The user can improve the results by specifying an arbitrary number of additional seed points to support the algorithm with grey value information and geometrical constraints. The presented method is tested on 12 magnetic resonance imaging datasets. The ground truth of the tumor boundaries are manually extracted by neurosurgeons. The segmented gliomas are compared with a one click method, and the semi-automatic approach yields an average Dice Similarity Coefficient (DSC) of 77.72% and 83.91%, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

P63: Automatic Detection of Glioblastoma Multiforme Tumors Using Magnetic Resonance Spectroscopy Data Based on Neural Network

Inflammation has been closely related to various forms of brain tumors. However, there is little knowledge about the role of inflammation in glioma. Grade IV glioma is formerly termed glioblastoma multiform (GBM). GBM is responsible for over 13,000 deaths per year in the America. Magnetic resonance imaging (MRI) is the most commonly used diagnostic method for GBM tumors. Recently, use of the MR...

متن کامل

Semi-Automated Segmentation of Brain MRI

In this project, we developed an interactive watershed transform tool for the segmentation of MRI images of glioblastoma multiforme patients. This assisted segmentation tool increases accuracy and reduces inter and intra-observer variability present in current segmentation practices. A C++ implementation of this algorithm was developed within the Insight Toolkit (ITK) library, and further visco...

متن کامل

Quality of Radiomic Features in Glioblastoma Multiforme: Impact of Semi-Automated Tumor Segmentation Software

OBJECTIVE The purpose of this study was to evaluate the reliability and quality of radiomic features in glioblastoma multiforme (GBM) derived from tumor volumes obtained with semi-automated tumor segmentation software. MATERIALS AND METHODS MR images of 45 GBM patients (29 males, 16 females) were downloaded from The Cancer Imaging Archive, in which post-contrast T1-weighted imaging and fluid-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1103.1777  شماره 

صفحات  -

تاریخ انتشار 2011