Statistical Inference for Pairwise Graphical Models Using Score Matching

نویسندگان

  • Ming Yu
  • Mladen Kolar
  • Varun Gupta
چکیده

Probabilistic graphical models have been widely used to model complex systems and aid scientific discoveries. As a result, there is a large body of literature focused on consistent model selection. However, scientists are often interested in understanding uncertainty associated with the estimated parameters, which current literature has not addressed thoroughly. In this paper, we propose a novel estimator for edge parameters for pairwise graphical models based on Hyvärinen scoring rule. Hyvärinen scoring rule is especially useful in cases where the normalizing constant cannot be obtained efficiently in a closed form. We prove that the estimator is p n-consistent and asymptotically Normal. This result allows us to construct confidence intervals for edge parameters, as well as, hypothesis tests. We establish our results under conditions that are typically assumed in the literature for consistent estimation. However, we do not require that the estimator consistently recovers the graph structure. In particular, we prove that the asymptotic distribution of the estimator is robust to model selection mistakes and uniformly valid for a large number of data-generating processes. We illustrate validity of our estimator through extensive simulation studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Assessing Multivariate Balance Conditional on the Propensity Score using Undirected Graphical Models

This note proposes a novel approach for assessing the balancing hypothesis that underlies propensity score matching methods based on using an information-theoretic approach to fit undirected graphical models. Graphical models are parametric statistical models for multivariate random variables whose conditional independence structure can be displayed in a mathematical graph. Specialized software...

متن کامل

Spectral Matching, Learning, and Inference using Pairwise Interactions

Several important applications in computer vision, such as 2D and 3D object matching, object category and action recognition, object category discovery, and texture discovery and analysis, require the ability to match features efficiently in the presence of background clutter and occlusion. In order to improve matching robustness and accuracy it is important to take in consideration not only th...

متن کامل

Learning Planar Ising Models

Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this pa...

متن کامل

Graphical Models for Inference and Learning in Computer Vision

Graphical models are indispensable as tools for inference in computer vision, where highly structured and interdependent output spaces can be described in terms of low-order, local relationships. One such problem is that of graph matching, where the goal is to localise various parts of an object within an image: although the number of joint configurations of these parts may be very large, the r...

متن کامل

What Cannot be Learned with Bethe Approximations

We address the problem of learning the parameters in graphical models when inference is intractable. A common strategy in this case is to replace the partition function with its Bethe approximation. We show that there exists a regime of empirical marginals where such Bethe learning will fail. By failure we mean that the empirical marginals cannot be recovered from the approximated maximum likel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016