Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition Citation

نویسندگان

  • Zheng Zhang
  • Xiu Yang
  • Ivan V. Oseledets
چکیده

Hierarchical uncertainty quantification can reduce the computational cost of stochastic circuit simulation by employing spectral methods at different levels. This paper presents an efficient framework to simulate hierarchically some challenging stochastic circuits/systems that include high-dimensional subsystems. Due to the high parameter dimensionality, it is challenging to both extract surrogate models at the low level of the design hierarchy and to handle them in the high-level simulation. In this paper, we develop an efficient ANOVAbased stochastic circuit/MEMS simulator to extract efficiently the surrogate models at the low level. In order to avoid the curse of dimensionality, we employ tensor-train decomposition at the high level to construct the basis functions and Gauss quadrature points. As a demonstration, we verify our algorithm on a stochastic oscillator with four MEMS capacitors and 184 random parameters. This challenging example is simulated efficiently by our simulator at the cost of only 10 minutes in MATLAB on a regular personal computer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Dimensional Uncertainty Quantification for an Electrothermal Field Problem using Stochastic Collocation on Sparse Grids and Tensor Train Decomposition

The temperature developed in bondwires of integrated circuits (ICs) is a possible source of malfunction, and has to be taken into account during the design phase of an IC. Due to manufacturing tolerances, a bondwire’s geometrical characteristics are uncertain parameters, and as such their impact has to be examined with the use of uncertainty quantification (UQ) methods. Sampling methods, like t...

متن کامل

Tensor Approximation of Advanced Metrics for Sensitivity Analysis

Following up on the success of the analysis of variance (ANOVA) decomposition and the Sobol indices (SI) for global sensitivity analysis, various related quantities of interest have been defined in the literature including the effective and mean dimensions, the dimension distribution, and the Shapley values. Such metrics combine up to exponential numbers of SI in different ways and can be of gr...

متن کامل

A Randomized Tensor Train Singular Value Decomposition

The hierarchical SVD provides a quasi-best low rank approximation of high dimensional data in the hierarchical Tucker framework. Similar to the SVD for matrices, it provides a fundamental but expensive tool for tensor computations. In the present work we examine generalizations of randomized matrix decomposition methods to higher order tensors in the framework of the hierarchical tensors repres...

متن کامل

Hierarchical Tensor Approximation of Output Quantities of Parameter-Dependent PDEs

Parametric PDEs appear in a large number of applications, as, e.g., in uncertainty quantification or optimisation. In many cases, one is interested in scalar output quantities induced by the parameter-dependent solution. The output can be interpreted as a tensor living on a high-dimensional parameter space. Our aim is to adaptively construct an approximation of this tensor in a data-sparse hier...

متن کامل

Parametric and Uncertainty Computations with Tensor Product Representations

Computational uncertainty quantification in a probabilistic setting is a special case of a parametric problem. Parameter dependent state vectors lead via association to a linear operator to analogues of covariance, its spectral decomposition, and the associated Karhunen-Loève expansion. From this one obtains a generalised tensor representation. The parameter in question may be a tuple of number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014