The star formation efficiency and its relation to variations in the initial mass function

نویسندگان

  • Paul C. Clark
  • Ian A. Bonnell
  • Ralf S. Klessen
چکیده

We investigate how the dynamical state of a turbulently supported, 1000M⊙, molecular cloud affects the properties of the cluster it forms, focusing our discussion on the star formation efficiency (SFE) and the initial mass function (IMF). A variety of initial energy states are examined in this paper, ranging from clouds with |Egrav| = 0.1Ekin to clouds with |Egrav| = 10Ekin , and for both isothermal and piece-wise polytropic equations of state (similar to that suggested by Larson). It is found that arbitrary star formation efficiencies are possible, with strongly unbound clouds yielding very low star formation efficiencies. We suggest that the low star formation efficiency in the Maddelena cloud may be a consequence of the relatively unbound state of its internal structure. It is also found that competitive accretion results in the observed IMF when the clouds have initial energy states of |Egrav| > Ekin. We show that under such conditions the shape of the IMF is independent of time in the calculations. This demonstrates that the global accretion process can be terminated at any stage in the cluster’s evolution, while still yielding a distribution of stellar masses that is consistent with the observed IMF. As the clouds become progressively more unbound, competitive accretion is less important and the protostellar mass function flattens. These results predict that molecular clouds should be permeated with a distributed population of stars that follow a flatter than Salpeter IMF.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling relations in dynamical evolution of star clusters

We have carried out a series of small scale collisional N-body calculations of single-mass star clusters to investigate the dependence of the lifetime of star clusters on their initial parameters. Our models move through an external galaxy potential with a logarithmic density profile and they are limited by a cut-off radius. In order to find scaling relations between the lifetime of star cluste...

متن کامل

Self - enrichment in globular clusters . I . An analytic approach

By means of analytical calculations, we explore the self-enrichment scenario for Globular Cluster formation. According to this scenario, an initial burst of star formation occurs inside the core radius of the initial gaseous distribution. The outward-propagating shock wave sweeps up a shell in which gravitational instabilities may arise, leading to the formation of a second, metal-enriched, pop...

متن کامل

IMF variations and their implications for Supernovae numbers

The stellar initial mass function (IMF) integrated over an entire galaxy is an integral over all separate star-formation events. Since most stars form in star clusters with different masses the integrated IMF becomes an integral of the (universal or invariant) canonical stellar IMF over the star-cluster mass function. This integrated IMF is steeper (contains fewer massive stars per Gtype star) ...

متن کامل

The Shape of the Initial Cluster Mass Function: What It Tells Us about the Local Star Formation Efficiency

We explore how the expulsion of gas from star cluster forming cloud cores due to supernova explosions affects the shape of the initial clustermass function, that is, themass function of star clusterswhen effects of gas expulsion are over. We demonstrate that if the radii of cluster-forming gas cores are roughly constant over the coremass range, as supported by observations, then more massive co...

متن کامل

The initial stellar mass function from random sampling in hierarchical clouds II: statistical fluctuations and a mass dependence for starbirth positions and times

Observed variations in the slope of the initial stellar mass function (IMF) are shown to be consistent with a model, introduced previously, in which the protostellar gas is randomly sampled from clouds with self-similar hierarchical structure. RMS variations in the IMF slope around the Salpeter value are ±0.4 when only 100 stars are observed, and ±0.1 when 1000 stars are observed. Similar varia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008